数据挖掘之clara算法原理及实例(代码中有bug)

时间:2022-01-12 22:17:15

继上两篇文章介绍聚类中基于划分思想的k-means算法和k-mediod算法

本文将继续介绍另外一种基于划分思想的k-mediod算法-----clara算法

clara算法可以说是对k-mediod算法的一种改进,就如同k-mediod算法对k-means算法的改进一样.

clara(clustering large application)算法是应用于大规模数据的聚类.而其核心算法还是利用k-mediod算法.

只是这种算法弥补了k-mediod算法只能应用于小规模数据的缺陷.

clara算法的核心是,先对大规模数据进行多次采样,每次采样样本进行med-diod聚类,然后将多次

采样的样本聚类中心进行比较,选出最优的聚类中心.当然clara算法也有一定的缺陷,因为它依赖于

抽样次数,每次样本数据是否均匀分布,以及抽样样本的大小.尽管这样,clara算法还是为我们提供了

一种进行大规模数据聚类的方法.

clara算法的具体描述如下:

1.对大规模数据进行多次采样得到采样样本

2.对每次采样的样本进行k-mediod聚类,得到多组聚类中心

3.求出每组聚类中心到其他所有点距离和.

4.找出这几组距离和的最小值.距离和最小的那组就是最优的聚类中心.

5.然后将大规模数据按照距离聚类到这组最优聚类中心

matlab仿真代码如下:

 clc;
clear; load Data3.mat; k=3; %给定的类别数目 time=5;%time为抽样的次数
number=30;%number为抽样本个数
for T=1:time
ClomStaticSample=zeros(1,number);
ClomStaticSample=randsample(ClomStatic,number); %ClomStaticSample就是样本数据
%接下来对样本数据使用kmediod算法进行聚类 %产生三个随机整数,随机聚类中心
p=randperm(number);
Temp=p(1:k);
Center=zeros(1,k);
for j=1:k
Center(j)=ClomStaticSample(Temp(j));
end
[ClomStaticSample]=sort(ClomStaticSample); TempDistance=zeros(number,3); %暂存差值 while 1
Circulm=1; %循环控制 p1=1;
p2=1;
p3=1; if(Circulm~=1)
clear Group1 Group2 Group3;
end
for i=1:number
for j=1:3
TempDistance(i,j)=abs(ClomStaticSample(i)-Center(j));
end
[RowMin RowIndex]=min(TempDistance(i,:));
if(RowIndex(1)==1)
Group1(p1)=ClomStaticSample(i);
p1=p1+1;
elseif(RowIndex(1)==2)
Group2(p2)=ClomStaticSample(i);
p2=p2+1;
elseif(RowIndex(1)==3)
Group3(p3)=ClomStaticSample(i);
p3=p3+1;
end
end len1=length(Group1);
len2=length(Group2);
len3=length(Group3); %分别计算每个类中除开类中心的点到其他所有点的距离和E,E最小时为该类新的聚类中心.
E=zeros(1,len1-1);
q1=1;
for j=1:len1
for i=1:number
if(Group1(j)~=Center(1)&&i~=j)
E(q1)=floor(abs(Group1(j)-ClomStaticSample(i)));
q1=q1+1;
end
end
end
NewCenter(1)=min(E); E=zeros(1,len2-1);
q2=1;
for j=1:len2
for i=1:number
if(Group2(j)~=Center(2)&&i~=j)
E(q2)=floor(abs(Group2(j)-ClomStaticSample(i)));
q2=q2+1;
end
end
end
NewCenter(2)=min(E); E=zeros(1,len3-1);
q3=1;
for j=1:len3
for i=1:number
if(Group3(j)~=Center(3)&&i~=j)
E(q3)=floor(abs(Group3(j)-ClomStaticSample(i)));
q3=q3+1;
end
end
end
NewCenter(3)=min(E); %判断新的类和旧类的聚类中心是否不同,不同则继续聚类,否则聚类结束
JudgeEqual=zeros(1,k);
for i=1:k
JudgeEqual=(NewCenter==Center);
end S=0;
for i=1:k
if(JudgeEqual(i)==1)
S=S+1;
end
end if(S==3)
break;
end Circulm=Circulm+1;
end
CenterSum5=zeros(time,k); %保存每次抽样后kmediod聚类中心的结果值.
CenterSum5(i,1)=Center(1);
CenterSum5(i,2)=Center(2);
CenterSum5(i,3)=Center(3);
end %计算每次聚类中心点到其他所有点的距离和的最小值即为最优聚类中心
Sum=zeros(1,time);
for i=1:time
for j=1:k
for r=1:number-1
if( CenterSum5(i,j)~=ClomStaticSample(r))
Sum(i)=Sum(i)+CenterSum5(i,j)-ClomStaticSample(r);
end
end
end
end [SumOrder CenterEnd]=sort(Sum);%最优聚类中心即为Center(CenterEnd); %对大数据进行最终的聚类(按照选择出来的最优聚类中心)
q1=1;
q2=1;
q3=1;
for i=1:length(ClomStatic)
for j=1:3
EndTempDistance(i,j)=abs(ClomStatic(i)-CenterSum5(CenterEnd,j));
end
[RowMin RowIndex]=min(EndTempDistance(i,:));
if(RowIndex(1)==1)
EndGroup1(q1)=ClomStatic(i);
q1=q1+1;
elseif(RowIndex(1)==2)
EndGroup2(q2)=ClomStatic(i);
q2=q2+1;
elseif(RowIndex(1)==3)
EndGroup3(q3)=ClomStatic(i);
q3=q3+1;
end
end