单变量线性回归:
- ex1.m
- plotData.m
- computerCost.m
- gradientDescent.m
多变量线性回归:
- ex1_multi.m
- featureNormalize.m
- computerCostMulti.m
- gredientDescentMulti.m
- normalEqn.m
ex1.m
%% Machine Learning Online Class - Exercise 1: Linear Regression % Instructions % ------------ % % This file contains code that helps you get started on the % linear exercise. You will need to complete the following functions % in this exericse: % % warmUpExercise.m % plotData.m % gradientDescent.m % computeCost.m % gradientDescentMulti.m % computeCostMulti.m % featureNormalize.m % normalEqn.m % % For this exercise, you will not need to change any code in this file, % or any other files other than those mentioned above. % % x refers to the population size in 10,000s % y refers to the profit in $10,000s % %% Initialization clear ; close all; clc %% ==================== Part 1: Basic Function ==================== % Complete warmUpExercise.m fprintf('Running warmUpExercise ... \n'); fprintf('5x5 Identity Matrix: \n'); warmUpExercise() fprintf('Program paused. Press enter to continue.\n'); pause; %% ======================= Part 2: Plotting ======================= fprintf('Plotting Data ...\n') data = load('ex1data1.txt'); X = data(:, 1); y = data(:, 2); m = length(y); % number of training examples % Plot Data % Note: You have to complete the code in plotData.m plotData(X, y); fprintf('Program paused. Press enter to continue.\n'); pause; %% =================== Part 3: Cost and Gradient descent =================== X = [ones(m, 1), data(:,1)]; % Add a column of ones to x theta = zeros(2, 1); % initialize fitting parameters % Some gradient descent settings iterations = 1500; alpha = 0.01; fprintf('\nTesting the cost function ...\n') % compute and display initial cost J = computeCost(X, y, theta); fprintf('With theta = [0 ; 0]\nCost computed = %f\n', J); fprintf('Expected cost value (approx) 32.07\n'); % further testing of the cost function J = computeCost(X, y, [-1 ; 2]); fprintf('\nWith theta = [-1 ; 2]\nCost computed = %f\n', J); fprintf('Expected cost value (approx) 54.24\n'); fprintf('Program paused. Press enter to continue.\n'); pause; fprintf('\nRunning Gradient Descent ...\n') % run gradient descent theta = gradientDescent(X, y, theta, alpha, iterations); % print theta to screen fprintf('Theta found by gradient descent:\n'); fprintf('%f\n', theta); fprintf('Expected theta values (approx)\n'); fprintf(' -3.6303\n 1.1664\n\n'); % Plot the linear fit hold on; % keep previous plot visible plot(X(:,2), X*theta, '-') legend('Training data', 'Linear regression') hold off % don't overlay any more plots on this figure % Predict values for population sizes of 35,000 and 70,000 predict1 = [1, 3.5] *theta; fprintf('For population = 35,000, we predict a profit of %f\n',... predict1*10000); predict2 = [1, 7] * theta; fprintf('For population = 70,000, we predict a profit of %f\n',... predict2*10000); fprintf('Program paused. Press enter to continue.\n'); pause; %% ============= Part 4: Visualizing J(theta_0, theta_1) ============= fprintf('Visualizing J(theta_0, theta_1) ...\n') % Grid over which we will calculate J theta0_vals = linspace(-10, 10, 100); theta1_vals = linspace(-1, 4, 100); % initialize J_vals to a matrix of 0's J_vals = zeros(length(theta0_vals), length(theta1_vals)); % Fill out J_vals for i = 1:length(theta0_vals) for j = 1:length(theta1_vals) t = [theta0_vals(i); theta1_vals(j)]; J_vals(i,j) = computeCost(X, y, t); end end % Because of the way meshgrids work in the surf command, we need to % transpose J_vals before calling surf, or else the axes will be flipped J_vals = J_vals'; % Surface plot figure; surf(theta0_vals, theta1_vals, J_vals) xlabel('\theta_0'); ylabel('\theta_1'); % Contour plot figure; % Plot J_vals as 15 contours spaced logarithmically between 0.01 and 100 contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 3, 20)) xlabel('\theta_0'); ylabel('\theta_1'); hold on; plot(theta(1), theta(2), 'rx', 'MarkerSize', 10, 'LineWidth', 2);
plotData.m
function plotData(x, y) %PLOTDATA Plots the data points x and y into a new figure % PLOTDATA(x,y) plots the data points and gives the figure axes labels of % population and profit. figure; % open a new figure window plot(x, y, 'rx', 'MarkerSize', 10); ylabel('Profit in $10,000s'); xlabel('Population of City in 10,000s'); % ====================== YOUR CODE HERE ====================== % Instructions: Plot the training data into a figure using the % "figure" and "plot" commands. Set the axes labels using % the "xlabel" and "ylabel" commands. Assume the % population and revenue data have been passed in % as the x and y arguments of this function. % % Hint: You can use the 'rx' option with plot to have the markers % appear as red crosses. Furthermore, you can make the % markers larger by using plot(..., 'rx', 'MarkerSize', 10); % ============================================================ end
computerCost.m
function J = computeCost(X, y, theta) %COMPUTECOST Compute cost for linear regression % J = COMPUTECOST(X, y, theta) computes the cost of using theta as the % parameter for linear regression to fit the data points in X and y % Initialize some useful values m = length(y); % number of training examples % You need to return the following variables correctly J = 0; % ====================== YOUR CODE HERE ====================== % Instructions: Compute the cost of a particular choice of theta % You should set J to the cost. h = X * theta; J = 1/(2*m) * sum((h-y).^2) % ========================================================================= end
gradientDescent.m
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters) %GRADIENTDESCENT Performs gradient descent to learn theta % theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by % taking num_iters gradient steps with learning rate alpha % Initialize some useful values m = length(y); % number of training examples J_history = zeros(num_iters, 1); for iter = 1:num_iters % ====================== YOUR CODE HERE ====================== % Instructions: Perform a single gradient step on the parameter vector % theta. % % Hint: While debugging, it can be useful to print out the values % of the cost function (computeCost) and gradient here. % tempTheta = theta; theta(1) = tempTheta(1) - alpha / m * sum(X * tempTheta - y); theta(2) = tempTheta(2) - alpha / m * sum((X * tempTheta - y) .*X(:,2)); % ============================================================ % Save the cost J in every iteration J_history(iter) = computeCost(X, y, theta); end end
ex1_multi.m
%% Machine Learning Online Class % Exercise 1: Linear regression with multiple variables % % Instructions % ------------ % % This file contains code that helps you get started on the % linear regression exercise. % % You will need to complete the following functions in this % exericse: % % warmUpExercise.m % plotData.m % gradientDescent.m % computeCost.m % gradientDescentMulti.m % computeCostMulti.m % featureNormalize.m % normalEqn.m % % For this part of the exercise, you will need to change some % parts of the code below for various experiments (e.g., changing % learning rates). % %% Initialization %% ================ Part 1: Feature Normalization ================ %% Clear and Close Figures clear ; close all; clc fprintf('Loading data ...\n'); %% Load Data data = load('ex1data2.txt'); X = data(:, 1:2); y = data(:, 3); m = length(y); % Print out some data points fprintf('First 10 examples from the dataset: \n'); fprintf(' x = [%.0f %.0f], y = %.0f \n', [X(1:10,:) y(1:10,:)]'); fprintf('Program paused. Press enter to continue.\n'); pause; % Scale features and set them to zero mean fprintf('Normalizing Features ...\n'); [X mu sigma] = featureNormalize(X); % Add intercept term to X X = [ones(m, 1) X]; %% ================ Part 2: Gradient Descent ================ % ====================== YOUR CODE HERE ====================== % Instructions: We have provided you with the following starter % code that runs gradient descent with a particular % learning rate (alpha). % % Your task is to first make sure that your functions - % computeCost and gradientDescent already work with % this starter code and support multiple variables. % % After that, try running gradient descent with % different values of alpha and see which one gives % you the best result. % % Finally, you should complete the code at the end % to predict the price of a 1650 sq-ft, 3 br house. % % Hint: By using the 'hold on' command, you can plot multiple % graphs on the same figure. % % Hint: At prediction, make sure you do the same feature normalization. % fprintf('Running gradient descent ...\n'); % Choose some alpha value alpha = 0.01; num_iters = 8500; % Init Theta and Run Gradient Descent theta = zeros(3, 1); [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters); % Plot the convergence graph figure; plot(1:numel(J_history), J_history, '-g', 'LineWidth', 2); xlabel('Number of iterations'); ylabel('Cost J'); % Display gradient descent's result fprintf('Theta computed from gradient descent: \n'); fprintf(' %f \n', theta); fprintf('\n'); % Estimate the price of a 1650 sq-ft, 3 br house % ====================== YOUR CODE HERE ====================== % Recall that the first column of X is all-ones. Thus, it does % not need to be normalized. a = (1650 - mu(1,1)) / sigma(1,1) b = (3 - mu(1,2)) / sigma(1,2) price = [1,a,b] * theta; % You should change this % ============================================================ fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ... '(using gradient descent):\n $%f\n'], price); fprintf('Program paused. Press enter to continue.\n'); pause; %% ================ Part 3: Normal Equations ================ fprintf('Solving with normal equations...\n'); % ====================== YOUR CODE HERE ====================== % Instructions: The following code computes the closed form % solution for linear regression using the normal % equations. You should complete the code in % normalEqn.m % % After doing so, you should complete this code % to predict the price of a 1650 sq-ft, 3 br house. % %% Load Data data = csvread('ex1data2.txt'); X = data(:, 1:2); y = data(:, 3); m = length(y); % Add intercept term to X X = [ones(m, 1) X]; % Calculate the parameters from the normal equation theta = normalEqn(X, y); % Display normal equation's result fprintf('Theta computed from the normal equations: \n'); fprintf(' %f \n', theta); fprintf('\n'); % Estimate the price of a 1650 sq-ft, 3 br house % ====================== YOUR CODE HERE ====================== price = [1,1650,3] * theta ; % You should change this % ============================================================ fprintf(['Predicted price of a 1650 sq-ft, 3 br house ' ... '(using normal equations):\n $%f\n'], price);
featureNormalize.m
function [X_norm, mu, sigma] = featureNormalize(X) %FEATURENORMALIZE Normalizes the features in X % FEATURENORMALIZE(X) returns a normalized version of X where % the mean value of each feature is 0 and the standard deviation % is 1. This is often a good preprocessing step to do when % working with learning algorithms. % You need to set these values correctly X_norm = X; size(X, 2) mu = zeros(1, size(X, 2)); sigma = zeros(1, size(X, 2)); % ====================== YOUR CODE HERE ====================== % Instructions: First, for each feature dimension, compute the mean % of the feature and subtract it from the dataset, % storing the mean value in mu. Next, compute the % standard deviation of each feature and divide % each feature by it's standard deviation, storing % the standard deviation in sigma. % % Note that X is a matrix where each column is a % feature and each row is an example. You need % to perform the normalization separately for % each feature. % % Hint: You might find the 'mean' and 'std' functions useful. % mu = mean(X); sigma = std(X) % for i = 1:size(X_norm, 2); % X_norm(:,i) = (X_norm(:,i) - mu(:,i))/sigma(:,i) X_norm = (X - repmat(mu,size(X,1),1)) ./ repmat(sigma,size(X,1),1); %X_norm = (X - mu) ./ sigma % ============================================================ end
computerCostMulti.m
function J = computeCostMulti(X, y, theta) %COMPUTECOSTMULTI Compute cost for linear regression with multiple variables % J = COMPUTECOSTMULTI(X, y, theta) computes the cost of using theta as the % parameter for linear regression to fit the data points in X and y % Initialize some useful values m = length(y); % number of training examples % You need to return the following variables correctly J = 0; % ====================== YOUR CODE HERE ====================== % Instructions: Compute the cost of a particular choice of theta % You should set J to the cost. J = sum((X * theta - y).^2) / (2*m); % J = 1 / (2 * m) * sum((X * theta - y).^2); % ========================================================================= end
gredientDescentMulti.m
function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters) %GRADIENTDESCENTMULTI Performs gradient descent to learn theta % theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by % taking num_iters gradient steps with learning rate alpha % Initialize some useful values m = length(y); % number of training examples J_history = zeros(num_iters, 1); for iter = 1:num_iters % ====================== YOUR CODE HERE ====================== % Instructions: Perform a single gradient step on the parameter vector % theta. % % Hint: While debugging, it can be useful to print out the values % of the cost function (computeCostMulti) and gradient here. % tempTheta = theta; for i = 1:size(theta,1) theta(i) = tempTheta(i) - alpha / m * sum((X * tempTheta - y) .* X(:,i)); end % ============================================================ % Save the cost J in every iteration J_history(iter) = computeCostMulti(X, y, theta); end end
normalEqn.m
function [theta] = normalEqn(X, y) %NORMALEQN Computes the closed-form solution to linear regression % NORMALEQN(X,y) computes the closed-form solution to linear % regression using the normal equations. theta = zeros(size(X, 2), 1); % ====================== YOUR CODE HERE ====================== % Instructions: Complete the code to compute the closed form solution % to linear regression and put the result in theta. % % ---------------------- Sample Solution ---------------------- theta = (X' * X) \ X' * y; % ------------------------------------------------------------- % ============================================================ end