题目链接:NanoApe Loves Sequence Ⅱ
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/131072 K (Java/Others)
Total Submission(s): 339 Accepted Submission(s): 165
In math class, NanoApe picked up sequences once again. He wrote down a sequence with n numbers and a number m on the paper.
Now he wants to know the number of continous subsequences of the sequence in such a manner that the k-th largest number in the subsequence is no less than m.
Note : The length of the subsequence must be no less than k.
In each test case, the first line of the input contains three integers n,m,k.
The second line of the input contains n integers A1,A2,...,An, denoting the elements of the sequence.
1≤T≤10, 2≤n≤200000, 1≤k≤n/2, 1≤m,Ai≤109
7 4 2
4 2 7 7 6 5 1
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn = ;
int a[maxn];
int prek[maxn];
int main()
{
int T;cin>>T;
while(T--)
{
int n,m,k;
cin>>n>>m>>k;
memset(prek,,sizeof(prek));
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
if(a[i]>=m) prek[i] += prek[i-]+;
else prek[i] = prek[i-];
}
long long ans = ;
int sum = ;
int t = ;
for(int l=;l<=n;l++)
{
while(t<=n&&sum<k)
{
sum = prek[t]-prek[l];
t++;
}
if(sum<k) break;
ans += (n-t+);
sum = prek[t-]-prek[l+];
}
printf("%I64d\n",ans);
}
return ;
}