I'm trying to optimize an algorithm in R that runs over an ordered set of values and determines whether there are values 'in the future' ( further down the set ) that have a lower value than the given value.
我正在尝试在R中优化一个算法,它运行在一个有序的值集合上,并确定是否有值“在未来”(在集合的后面)比给定值更低。
For example:
例如:
+-------+--------------------------------+
| Value | RestOfSeriesContainsLowerValue |
+-------+--------------------------------+
| 5 | true |
| 4 | true |
| 2 | true |
| 1 | false |
| 3 | true |
| 4 | true |
| 4 | true |
| 3 | true |
| 3 | true |
| 2 | false |
| 2 | false |
| 2 | false |
| 7 | false |
| 8 | false |
| 9 | false |
| ... | ... |
+-------+--------------------------------+
The local minima are values 1 and 2. Therefore RestOfSeriesContainsLowerValue for the first items in this set valuates to true - since there's a value (1) further down the set that has a lower value.
局部最小值为1和2。因此,这个集合中的第一个条目的restofseriesslowervalue值为true—因为在这个集合的后面有一个值(1),它的值更低。
After the 1 value - the 3 and 4 values valuate to true, since the new local minimum ( value 2 ) is coming up later down the set.
在1值之后——值为3和4的值为true,因为新的局部最小值(值2)将在后面的集合中出现。
We're currently using a for loop that runs over the - in pseudo code:
我们目前使用的for循环运行在- in伪代码上:
for (i in set) {
if(value(i) <= min(set[,i:end]))
RestOfSeriesContainsLowerValue(i) = true
else
RestOfSeriesContainsLowerValue(i) = false
}
However this is not efficient enough. I'm looking for a set based / functional way to write this in R but cannot get my head around it. Can I use lapply
to do this?
然而,这还不够有效。我正在寻找一种以R为基础的/函数式的方法来写这个,但却无法得到它。我能用lapply做这个吗?
1 个解决方案
#1
2
Your pseudo code in functional R code using lapply
使用lapply编写函数R代码中的伪代码
f <-function(value) unlist(lapply(seq_along(value), function(i)if(value[i] <= min(value[i:length(value)]))FALSE else TRUE))
Vectorized code for achieving the same is
实现相同的矢量化代码是
f1 <- function(value)value > rev(cummin(rev(value)))
Depending on the sample size, the vectorized code can be arbitrarily faster. For n=100
it is about 10 times faster, 100 times faster for 1000
, around 1000 times faster for 10000
根据示例大小,矢量化代码可以任意地更快。n=100时,速度快10倍,1000时快100倍,10000时快1000倍
value <- sample(1:100, 1000, replace = TRUE)
microbenchmark::microbenchmark(f(value), f1(value), unit="relative")
#Unit: relative
# expr min lq mean median uq max neval
# f(value) 172.3758 174.2449 124.1607 107.5502 104.8017 96.85548 100
#f1(value) 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 100
#1
2
Your pseudo code in functional R code using lapply
使用lapply编写函数R代码中的伪代码
f <-function(value) unlist(lapply(seq_along(value), function(i)if(value[i] <= min(value[i:length(value)]))FALSE else TRUE))
Vectorized code for achieving the same is
实现相同的矢量化代码是
f1 <- function(value)value > rev(cummin(rev(value)))
Depending on the sample size, the vectorized code can be arbitrarily faster. For n=100
it is about 10 times faster, 100 times faster for 1000
, around 1000 times faster for 10000
根据示例大小,矢量化代码可以任意地更快。n=100时,速度快10倍,1000时快100倍,10000时快1000倍
value <- sample(1:100, 1000, replace = TRUE)
microbenchmark::microbenchmark(f(value), f1(value), unit="relative")
#Unit: relative
# expr min lq mean median uq max neval
# f(value) 172.3758 174.2449 124.1607 107.5502 104.8017 96.85548 100
#f1(value) 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 100