Given an array of integer counts c
, how can I transform that into an array of integers inds
such that np.all(np.bincount(inds) == c)
is true?
给定一个整数计数c的数组,如何将其转换为整数inds数组,使得np.all(np.bincount(inds)== c)为真?
For example:
例如:
>>> c = np.array([1,3,2,2])
>>> inverse_bincount(c) # <-- what I need
array([0,1,1,1,2,2,3,3])
Context: I'm trying to keep track of the location of multiple sets of data, while performing computation on all of them at once. I concatenate all the data together for batch processing, but I need an index array to extract the results back out.
上下文:我试图跟踪多组数据的位置,同时对所有数据进行计算。我将所有数据连接在一起进行批处理,但我需要一个索引数组来提取结果。
Current workaround:
目前的解决方法:
def inverse_bincount(c):
return np.array(list(chain.from_iterable([i]*n for i,n in enumerate(c))))
3 个解决方案
#2
1
no numpy needed :
不需要numpy:
c = [1,3,2,2]
reduce(lambda x,y: x + [y] * c[y], range(len(c)), [])
#3
1
The following is about twice as fast on my machine than the currently accepted answer; although I must say I am surprised by how well np.repeat does. I would expect it to suffer a lot from temporary object creation, but it does pretty well.
以下在我的机器上的速度是目前接受答案的两倍;虽然我必须说我对np.repeat的表现感到惊讶。我希望它可以从临时对象创建中受到很大影响,但它确实很好。
import numpy as np
c = np.array([1,3,2,2])
p = np.cumsum(c)
i = np.zeros(p[-1],np.int)
np.add.at(i, p[:-1], 1)
print np.cumsum(i)
#1
#2
1
no numpy needed :
不需要numpy:
c = [1,3,2,2]
reduce(lambda x,y: x + [y] * c[y], range(len(c)), [])
#3
1
The following is about twice as fast on my machine than the currently accepted answer; although I must say I am surprised by how well np.repeat does. I would expect it to suffer a lot from temporary object creation, but it does pretty well.
以下在我的机器上的速度是目前接受答案的两倍;虽然我必须说我对np.repeat的表现感到惊讶。我希望它可以从临时对象创建中受到很大影响,但它确实很好。
import numpy as np
c = np.array([1,3,2,2])
p = np.cumsum(c)
i = np.zeros(p[-1],np.int)
np.add.at(i, p[:-1], 1)
print np.cumsum(i)