原题:ZOJ 3795 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3795
题目大意:给定一个有向图,要求把点分为k个集合,使得每个集合中的任意两点a, b满足a, b互相不可到达。
分析:求出强连通分量后缩点,得到有向无环图,dfs该图求出各点深度(深度加权,权值为强连通分量大小),深度最大值即答案,
因为这一条路径上任意两点都可从深度小的一点到达深度大的一点,所以任意两点必定属于不同集合,即每个点一个集合;求的最大深度集合后,又可以把其它路径(长度为len)上的各点依次归到集合1..len。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#define Mod 1000000009
using namespace std;
#define N 100007 vector<int> G[N],G2[N];
stack<int> stk;
int instk[N],cnt,Time,n,m,dep[N];
int low[N],dfn[N],bel[N],num[N]; void tarjan(int u)
{
low[u] = dfn[u] = ++Time;
stk.push(u);
instk[u] = ;
for(int i=;i<G[u].size();i++)
{
int v = G[u][i];
if(!dfn[v])
{
tarjan(v);
low[u] = min(low[u],low[v]);
}
else if(instk[v])
low[u] = min(low[u],dfn[v]);
}
if(low[u] == dfn[u])
{
cnt++;
int v;
do
{
v = stk.top();
stk.pop();
instk[v] = ;
bel[v] = cnt;
num[cnt]++;
}while(u != v);
}
} void Tarjan()
{
memset(bel,,sizeof(bel));
memset(instk,,sizeof(instk));
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(num,,sizeof(num));
Time = cnt = ;
while(!stk.empty())
stk.pop();
for(int i=;i<=n;i++)
if(!dfn[i])
tarjan(i);
} void Build()
{
int i,j;
for(i=;i<=cnt;i++)
G2[i].clear();
for(i=;i<=n;i++)
{
for(j=;j<G[i].size();j++)
{
int v = G[i][j];
if(bel[i] != bel[v])
G2[bel[i]].push_back(bel[v]);
}
}
} int dfs(int u)
{
if(dep[u])
return dep[u];
for(int i=;i<G2[u].size();i++)
{
int v = G2[u][i];
dep[u] = max(dep[u],dfs(v));
}
dep[u] += num[u];
return dep[u];
} int main()
{
int i,j,u,v;
while(scanf("%d%d",&n,&m)!=EOF)
{
for(i=;i<=n;i++)
G[i].clear();
for(i=;i<m;i++)
{
scanf("%d%d",&u,&v);
G[u].push_back(v);
}
Tarjan();
Build();
memset(dep,,sizeof(dep));
int res = ;
for(i=;i<=n;i++)
res = max(res,dfs(i));
printf("%d\n",res);
}
return ;
}