版权声明:本文为博主原创文章,遵循版权协议,转载请附上原文出处链接和本声明。
在介绍HBASE flush源码之前,我们先在逻辑上大体梳理一下,便于后续看代码。flush的整体流程分三个阶段
1.第一阶段:prepare阶段,这个阶段主要是将当前memstore的内存结构做snapshot。HBASE写入内存的数据结构(memstore以及snapshot)是跳跃表,用的是jdk自带的ConcurrentSkipListMap结构。这个过程其实就是将memstore赋值给snapshot,并构造一个新的memstore。
2.第二阶段:flushcache阶段,这个阶段主要是将第一阶段生成的snapshot flush到disk,但是注意这里是将其flush到temp文件,此时并没有将生成的hfile move到store实际对应的cf路径下,move是发生在第三阶段。
3.第三阶段:commit阶段。这个阶段主要是将第二阶段生成的hfile move最终正确的位置。
上面是HBASE flush的逻辑流程,flush是region级别,涉及到的类很多,下面我们开始介绍一下Flush相关的操作。
flush线程启动
- 在regionserver启动时,会调用startServiceThread方法启动一些服务线程,其中
// Cache flushing
protected MemStoreFlusher cacheFlusher;
。。。。。省略。。。。。。
private void startServiceThreads() throws IOException {
。。。。其他代码省略。。。
this.cacheFlusher.start(uncaughtExceptionHandler);
}
- 而cacheFlusher是MemStoreFlusher类的实例,在梳理上述逻辑之前首先介绍两个MemStoreFlusher的变量
//该变量是一个BlockingQueue<FlushQueueEntry>类型的变量。
// 主要存储了FlushRegionEntry类型刷新请求实例,以及一个唤醒队列WakeupFlushThread实例对象。
private final BlockingQueue<FlushQueueEntry> flushQueue =
new DelayQueue<FlushQueueEntry>();
//同时也会把加入到flushqueue中的requst加入到regionsInQueue中。
private final Map<HRegion, FlushRegionEntry> regionsInQueue =
new HashMap<HRegion, FlushRegionEntry>();- MemStoreFlusher的start方法如下:
synchronized void start(UncaughtExceptionHandler eh) {
ThreadFactory flusherThreadFactory = Threads.newDaemonThreadFactory(
server.getServerName().toShortString() + "-MemStoreFlusher", eh);
for (int i = 0; i < flushHandlers.length; i++) {
flushHandlers[i] = new FlushHandler("MemStoreFlusher." + i);
flusherThreadFactory.newThread(flushHandlers[i]);
flushHandlers[i].start();
}
}
会根据配置flusher.handler.count生成相应个数的flushHandler线程。然后对每一个flushHandler线程调用start方法。我们继续看一下flushHandler。
private class FlushHandler extends HasThread {
private FlushHandler(String name) {
super(name);
}
@Override
public void run() {
//如果server正常没有stop
while (!server.isStopped()) {
FlushQueueEntry fqe = null;
try {
wakeupPending.set(false); // allow someone to wake us up again
//阻塞队列的poll方法,如果没有会阻塞在这
fqe = flushQueue.poll(threadWakeFrequency, TimeUnit.MILLISECONDS);
if (fqe == null || fqe instanceof WakeupFlushThread) {
// 如果没有flush request或者flush request是一个全局flush的request。
if (isAboveLowWaterMark()) {
// 检查所有的memstore是否超过max_heap * hbase.regionserver.global.memstore.lowerLimit配置的值,默认0.35
// 超过配置的最小memstore的值,flush最大的一个memstore的region
LOG.debug("Flush thread woke up because memory above low water="
+ TraditionalBinaryPrefix.long2String(globalMemStoreLimitLowMark, "", 1)); if (!flushOneForGlobalPressure()) {
// 如果没有任何Region需要flush,但已经超过了lowerLimit。
// 这种情况不太可能发生,除非可能会在关闭整个服务器时发生,即有另一个线程正在执行flush regions。
// 只里只需要sleep一下,然后唤醒任何被阻塞的线程再次检查。
// Wasn't able to flush any region, but we're above low water mark
// This is unlikely to happen, but might happen when closing the
// entire server - another thread is flushing regions. We'll just
// sleep a little bit to avoid spinning, and then pretend that
// we flushed one, so anyone blocked will check again
Thread.sleep(1000);
wakeUpIfBlocking();
}
// Enqueue another one of these tokens so we'll wake up again
wakeupFlushThread();
}
//阻塞超时后也会继续continue
continue;
}
// 如果是正常的flush request
// 单个region memstore大小超过hbase.hregion.memstore.flush.size配置的值,默认128M,执行flush操作
FlushRegionEntry fre = (FlushRegionEntry) fqe;
if (!flushRegion(fre)) {
break;
}
} catch (InterruptedException ex) {
continue;
} catch (ConcurrentModificationException ex) {
continue;
} catch (Exception ex) {
LOG.error("Cache flusher failed for entry " + fqe, ex);
if (!server.checkFileSystem()) {
break;
}
}
}
//结束MemStoreFlusher的线程调用,通常是regionserver stop,这个是在while循环之外的
synchronized (regionsInQueue) {
regionsInQueue.clear();
flushQueue.clear();
} // Signal anyone waiting, so they see the close flag
wakeUpIfBlocking();
LOG.info(getName() + " exiting");
}
现在我们看是看梳理一下FlusherHandler的run方法的逻辑
- 只要rs不挂,就一直循环判断有没有flushrequest
- 通过flushqueue.poll来阻塞,应该flushqueue是阻塞队列,当队列为空时会阻塞,直到超时。
- 如果不为空,取出一个request,调用MemStoreFlusher.flushRegion(fre)
Flush流程
可见是调用的MemStoreFlusher.flushRegion方法进行flush的,我们继续跟进flushRegion一探究竟。
private boolean flushRegion(final FlushRegionEntry fqe) {
//在FlushQueueEntry中取出region信息
HRegion region = fqe.region;
//如果region不是metaregion并且含有太多的storefile,则随机blcoking.
//tooManyStoreFiles默认的阈值时7,同时也要看hbase.hstore.blockingStoreFiles配置的值,没有配置取默认值7
if (!region.getRegionInfo().isMetaRegion() &&
isTooManyStoreFiles(region)) { //判断是否已经wait了设置的时间
if (fqe.isMaximumWait(this.blockingWaitTime)) {
LOG.info("Waited " + (EnvironmentEdgeManager.currentTime() - fqe.createTime) +
"ms on a compaction to clean up 'too many store files'; waited " +
"long enough... proceeding with flush of " +
region.getRegionNameAsString());
} else {
// If this is first time we've been put off, then emit a log message.
//如果当前flush是第一次加入到flush queue
if (fqe.getRequeueCount() <= 0) {
// Note: We don't impose blockingStoreFiles constraint on meta regions
LOG.warn("Region " + region.getRegionNameAsString() + " has too many " +
"store files; delaying flush up to " + this.blockingWaitTime + "ms");
//flush前判断该region是否需要split,如果不需要split,同时因为又太多的storefiles,因此调用过一次compact
if (!this.server.compactSplitThread.requestSplit(region)) {
try {
this.server.compactSplitThread.requestSystemCompaction(
region, Thread.currentThread().getName());
} catch (IOException e) {
LOG.error(
"Cache flush failed for region " + Bytes.toStringBinary(region.getRegionName()),
RemoteExceptionHandler.checkIOException(e));
}
}
} // Put back on the queue. Have it come back out of the queue
// after a delay of this.blockingWaitTime / 100 ms.
//如果有too manyfile的region已经超过了随机延迟的时间,加入flushqueue队列,唤醒handler开始flush
this.flushQueue.add(fqe.requeue(this.blockingWaitTime / 100));
// Tell a lie, it's not flushed but it's ok
return true;
}
}
//正常情况下的flush
return flushRegion(region, false, fqe.isForceFlushAllStores());
}
该方法中会判断要flush的region是否有过多的hfile,如果是则随机wait一定的时间。wait完成后加入flushqueue唤醒handler开始flush。在正常的情况下最终是调用MemStoreFlusher的重载函数flushRgion(region,flase, isForceFlushAllStores),那我们继续跟进该重载函数。
private boolean flushRegion(final HRegion region, final boolean emergencyFlush,
boolean forceFlushAllStores) {
long startTime = 0;
//枷锁
synchronized (this.regionsInQueue) {
//在regioninQueue中移除该region
FlushRegionEntry fqe = this.regionsInQueue.remove(region);
// Use the start time of the FlushRegionEntry if available
if (fqe != null) {
startTime = fqe.createTime;
}
if (fqe != null && emergencyFlush) {
// Need to remove from region from delay queue. When NOT an
// emergencyFlush, then item was removed via a flushQueue.poll.
flushQueue.remove(fqe);
}
}
if (startTime == 0) {
// Avoid getting the system time unless we don't have a FlushRegionEntry;
// shame we can't capture the time also spent in the above synchronized
// block
startTime = EnvironmentEdgeManager.currentTime();
}
lock.readLock().lock();
try {
notifyFlushRequest(region, emergencyFlush);
//最终是调用region的flushcache
HRegion.FlushResult flushResult = region.flushcache(forceFlushAllStores);
boolean shouldCompact = flushResult.isCompactionNeeded();
// We just want to check the size
boolean shouldSplit = region.checkSplit() != null;
if (shouldSplit) {
this.server.compactSplitThread.requestSplit(region);
} else if (shouldCompact) {
server.compactSplitThread.requestSystemCompaction(
region, Thread.currentThread().getName());
}
if (flushResult.isFlushSucceeded()) {
long endTime = EnvironmentEdgeManager.currentTime();
server.metricsRegionServer.updateFlushTime(endTime - startTime);
}
} catch (DroppedSnapshotException ex) {
// Cache flush can fail in a few places. If it fails in a critical
// section, we get a DroppedSnapshotException and a replay of wal
// is required. Currently the only way to do this is a restart of
// the server. Abort because hdfs is probably bad (HBASE-644 is a case
// where hdfs was bad but passed the hdfs check).
server.abort("Replay of WAL required. Forcing server shutdown", ex);
return false;
} catch (IOException ex) {
LOG.error("Cache flush failed" +
(region != null ? (" for region " + Bytes.toStringBinary(region.getRegionName())) : ""),
RemoteExceptionHandler.checkIOException(ex));
if (!server.checkFileSystem()) {
return false;
}
} finally {
lock.readLock().unlock();
wakeUpIfBlocking();
}
return true;
}
其他无关的代码这里不再细说,之间看标红的位置,核心逻辑在这里,可以看到是调用的region.flushcache(isForceFlushAllStores),因此flush是region级别。同时在flush完成后会判断是否需要进行split,如果不需要split会将判断是否需要compact。继续跟进看下里面做了啥。
//flush cache,参数意义为是否需要flush所有的store
public FlushResult flushcache(boolean forceFlushAllStores) throws IOException {
// fail-fast instead of waiting on the lock
//判断当前region是否处于closing状态,
if (this.closing.get()) {
String msg = "Skipping flush on " + this + " because closing";
LOG.debug(msg);
return new FlushResult(FlushResult.Result.CANNOT_FLUSH, msg);
}
MonitoredTask status = TaskMonitor.get().createStatus("Flushing " + this);
status.setStatus("Acquiring readlock on region");
// block waiting for the lock for flushing cache
//此处加了锁
lock.readLock().lock();
try {
if (this.closed.get()) {
String msg = "Skipping flush on " + this + " because closed";
LOG.debug(msg);
status.abort(msg);
return new FlushResult(FlushResult.Result.CANNOT_FLUSH, msg);
}
if (coprocessorHost != null) {
status.setStatus("Running coprocessor pre-flush hooks");
coprocessorHost.preFlush();
}
// TODO: this should be managed within memstore with the snapshot, updated only after flush
// successful
if (numMutationsWithoutWAL.get() > 0) {
numMutationsWithoutWAL.set(0);
dataInMemoryWithoutWAL.set(0);
}
synchronized (writestate) {
//此次flush之前 该region并没有在flush,是否还处于write状态
if (!writestate.flushing && writestate.writesEnabled) {
this.writestate.flushing = true;
} else {//否则表示该region正处于flushing状态或者不可写,abort flush
if (LOG.isDebugEnabled()) {
LOG.debug("NOT flushing memstore for region " + this
+ ", flushing=" + writestate.flushing + ", writesEnabled="
+ writestate.writesEnabled);
}
String msg = "Not flushing since "
+ (writestate.flushing ? "already flushing"
: "writes not enabled");
status.abort(msg);
return new FlushResult(FlushResult.Result.CANNOT_FLUSH, msg);
}
} try {
//根据参数forceFlushAllStores判断是否需要所有的store都进行flush,否侧按照flush策略进行选择
//非全局flush的选择策略:flushSizeLowerBound是参数hbase.hregion.percolumnfamilyflush.size.lower.bound,默认16M或者不满足大小,
//但是该memstore足够老
Collection<Store> specificStoresToFlush =
forceFlushAllStores ? stores.values() : flushPolicy.selectStoresToFlush();
//调用internalFlushcache进行flush
FlushResult fs = internalFlushcache(specificStoresToFlush, status); if (coprocessorHost != null) {
status.setStatus("Running post-flush coprocessor hooks");
coprocessorHost.postFlush();
} status.markComplete("Flush successful");
return fs;
} finally {
synchronized (writestate) {
writestate.flushing = false;
this.writestate.flushRequested = false;
writestate.notifyAll();
}
}
} finally {
lock.readLock().unlock();
status.cleanup();
}
}
核心逻辑在FlushResult fs = internalFlushcache(specificStoresToFlush, status);里面涉及到了具体的三个阶段,其中prepare的第一阶段是调用了region.internalPrepareFlushCache()实现的,第二阶段flush以及第三阶段commit阶段,是通过internalFlushAndCommit()进行的。我们现在看下具体的internalFlushCache方法的逻辑:
protected FlushResult internalFlushcache(final WAL wal, final long myseqid,
final Collection<Store> storesToFlush, MonitoredTask status) throws IOException {
//internalPrepareFlushCache执行snapshot,打快照
PrepareFlushResult result
= internalPrepareFlushCache(wal, myseqid, storesToFlush, status, false);
//返回的result中的result是null.因此会执行internalFlushchacheAndCommit方法执行第二和第三阶段。
if (result.result == null) {
return internalFlushCacheAndCommit(wal, status, result, storesToFlush);
} else {
return result.result; // early exit due to failure from prepare stage
}
}
现在我们看一下第一阶段: internalPrepareFlushCache。里面有一把region级别的updatelock。,这个里面代码比较多,可以先忽略不重要的部分
//该方法用来执行flush的prepare阶段
protected PrepareFlushResult internalPrepareFlushCache(
final WAL wal, final long myseqid, final Collection<Store> storesToFlush,
MonitoredTask status, boolean isReplay)
throws IOException { if (this.rsServices != null && this.rsServices.isAborted()) {
// Don't flush when server aborting, it's unsafe
throw new IOException("Aborting flush because server is aborted...");
}
//便于计算flush耗时,记录开始时间
final long startTime = EnvironmentEdgeManager.currentTime();
// If nothing to flush, return, but we need to safely update the region sequence id
//如果当前memstroe为空,不执行flush,但是要更新squenid
if (this.memstoreSize.get() <= 0) {
// Take an update lock because am about to change the sequence id and we want the sequence id
// to be at the border of the empty memstore.
MultiVersionConsistencyControl.WriteEntry w = null;
this.updatesLock.writeLock().lock();
try {
if (this.memstoreSize.get() <= 0) {
// Presume that if there are still no edits in the memstore, then there are no edits for
// this region out in the WAL subsystem so no need to do any trickery clearing out
// edits in the WAL system. Up the sequence number so the resulting flush id is for
// sure just beyond the last appended region edit (useful as a marker when bulk loading,
// etc.)
// wal can be null replaying edits.
if (wal != null) {
w = mvcc.beginMemstoreInsert();
long flushSeqId = getNextSequenceId(wal);
FlushResult flushResult = new FlushResult(
FlushResult.Result.CANNOT_FLUSH_MEMSTORE_EMPTY, flushSeqId, "Nothing to flush");
w.setWriteNumber(flushSeqId);
mvcc.waitForPreviousTransactionsComplete(w);
w = null;
return new PrepareFlushResult(flushResult, myseqid);
} else {
return new PrepareFlushResult(
new FlushResult(FlushResult.Result.CANNOT_FLUSH_MEMSTORE_EMPTY, "Nothing to flush"),
myseqid);
}
}
} finally {
this.updatesLock.writeLock().unlock();
if (w != null) {
mvcc.advanceMemstore(w);
}
}
} if (LOG.isInfoEnabled()) {
LOG.info("Started memstore flush for " + this + ", current region memstore size "
+ StringUtils.byteDesc(this.memstoreSize.get()) + ", and " + storesToFlush.size() + "/"
+ stores.size() + " column families' memstores are being flushed."
+ ((wal != null) ? "" : "; wal is null, using passed sequenceid=" + myseqid));
// only log when we are not flushing all stores.
//当不是flush所有的store时,打印log
if (this.stores.size() > storesToFlush.size()) {
for (Store store : storesToFlush) {
LOG.info("Flushing Column Family: " + store.getColumnFamilyName()
+ " which was occupying "
+ StringUtils.byteDesc(store.getMemStoreSize()) + " of memstore.");
}
}
}
// Stop updates while we snapshot the memstore of all of these regions' stores. We only have
// to do this for a moment. It is quick. We also set the memstore size to zero here before we
// allow updates again so its value will represent the size of the updates received
// during flush
//停止写入,直到memstore的snapshot完成。
MultiVersionConsistencyControl.WriteEntry w = null;
// We have to take an update lock during snapshot, or else a write could end up in both snapshot
// and memstore (makes it difficult to do atomic rows then)
status.setStatus("Obtaining lock to block concurrent updates");
// block waiting for the lock for internal flush
//获取update的写锁
this.updatesLock.writeLock().lock();
status.setStatus("Preparing to flush by snapshotting stores in " +
getRegionInfo().getEncodedName());
//用于统计flush的所有的store的memtore内存大小之和
long totalFlushableSizeOfFlushableStores = 0;
//记录所有flush的store的cfname
Set<byte[]> flushedFamilyNames = new HashSet<byte[]>();
for (Store store : storesToFlush) {
flushedFamilyNames.add(store.getFamily().getName());
}
//storeFlushCtxs,committedFiles,storeFlushableSize,比较重要的是storeFlushCtxs和committedFiles。他们都被定义为以CF做key的TreeMap,
// 分别代表了store的CF实际执行(StoreFlusherImpl)和最终刷写的HFlile文件。
//其中storeFlushContext的实现类StoreFlusherImpl里包含了flush相关的核心操作:prepare,flushcache,commit,abort等。
//所以这里保存的是每一个store的flush实例,后面就是通过这里的StoreFlushContext进行flush的
TreeMap<byte[], StoreFlushContext> storeFlushCtxs
= new TreeMap<byte[], StoreFlushContext>(Bytes.BYTES_COMPARATOR);
//用来存储每个store和它对应的hdfs commit路径的映射
TreeMap<byte[], List<Path>> committedFiles = new TreeMap<byte[], List<Path>>(
Bytes.BYTES_COMPARATOR);
// The sequence id of this flush operation which is used to log FlushMarker and pass to
// createFlushContext to use as the store file's sequence id.
long flushOpSeqId = HConstants.NO_SEQNUM;
long flushedSeqId = HConstants.NO_SEQNUM;
// The max flushed sequence id after this flush operation. Used as completeSequenceId which is
// passed to HMaster.
byte[] encodedRegionName = getRegionInfo().getEncodedNameAsBytes(); long trxId = 0;
try {
try {
w = mvcc.beginMemstoreInsert();
if (wal != null) {
if (!wal.startCacheFlush(encodedRegionName, flushedFamilyNames)) {
// This should never happen.
String msg = "Flush will not be started for ["
+ this.getRegionInfo().getEncodedName() + "] - because the WAL is closing.";
status.setStatus(msg);
return new PrepareFlushResult(new FlushResult(FlushResult.Result.CANNOT_FLUSH, msg),
myseqid);
}
flushOpSeqId = getNextSequenceId(wal);
long oldestUnflushedSeqId = wal.getEarliestMemstoreSeqNum(encodedRegionName);
// no oldestUnflushedSeqId means we flushed all stores.
// or the unflushed stores are all empty.
flushedSeqId = (oldestUnflushedSeqId == HConstants.NO_SEQNUM) ? flushOpSeqId
: oldestUnflushedSeqId - 1;
} else {
// use the provided sequence Id as WAL is not being used for this flush.
flushedSeqId = flushOpSeqId = myseqid;
}
//循环遍历region下面的storeFile,为每个storeFile生成了一个StoreFlusherImpl类,
// 生成MemStore的快照就是调用每个StoreFlusherImpl的prepare方法生成每个storeFile的快照,
// 至于internalFlushCacheAndCommit中的flush和commti行为也是调用了region中每个storeFile的flushCache和commit接口。 for (Store s : storesToFlush) {
//用于统计flush的所有的store的memtore内存大小之和,而不是snapshot的getCellsCount()
totalFlushableSizeOfFlushableStores += s.getFlushableSize();
//为每一个store生成自己的storeFlushImpl
storeFlushCtxs.put(s.getFamily().getName(), s.createFlushContext(flushOpSeqId));
//此时还没有生成flush的hfile路径
committedFiles.put(s.getFamily().getName(), null); // for writing stores to WAL
} // write the snapshot start to WAL
if (wal != null && !writestate.readOnly) {
FlushDescriptor desc = ProtobufUtil.toFlushDescriptor(FlushAction.START_FLUSH,
getRegionInfo(), flushOpSeqId, committedFiles);
// no sync. Sync is below where we do not hold the updates lock
//这里只是向wal中写入begin flush的marker,真正的sync在后面做,因为这里加了update的写锁,所有耗时操作都不在这里进行
trxId = WALUtil.writeFlushMarker(wal, this.htableDescriptor, getRegionInfo(),
desc, sequenceId, false);
} // Prepare flush (take a snapshot)这里的StoreFlushContext就是StoreFlusherImpl
for (StoreFlushContext flush : storeFlushCtxs.values()) {
//迭代region下的每一个store,把memstore下的kvset复制到memstore的snapshot中并清空kvset的值
//把memstore的snapshot复制到HStore的snapshot中
flush.prepare();//其prepare方法就是调用store的storeFlushImpl的snapshot方法生成快照
}
} catch (IOException ex) {
if (wal != null) {
if (trxId > 0) { // check whether we have already written START_FLUSH to WAL
try {
FlushDescriptor desc = ProtobufUtil.toFlushDescriptor(FlushAction.ABORT_FLUSH,
getRegionInfo(), flushOpSeqId, committedFiles);
WALUtil.writeFlushMarker(wal, this.htableDescriptor, getRegionInfo(),
desc, sequenceId, false);
} catch (Throwable t) {
LOG.warn("Received unexpected exception trying to write ABORT_FLUSH marker to WAL:" +
StringUtils.stringifyException(t));
// ignore this since we will be aborting the RS with DSE.
}
}
// we have called wal.startCacheFlush(), now we have to abort it
wal.abortCacheFlush(this.getRegionInfo().getEncodedNameAsBytes());
throw ex; // let upper layers deal with it.
}
} finally {
//做完snapshot释放锁,此时不会阻塞业务的读写操作了
this.updatesLock.writeLock().unlock();
}
String s = "Finished memstore snapshotting " + this +
", syncing WAL and waiting on mvcc, flushsize=" + totalFlushableSizeOfFlushableStores;
status.setStatus(s);
if (LOG.isTraceEnabled()) LOG.trace(s);
// sync unflushed WAL changes
// see HBASE-8208 for details
if (wal != null) {
try {
wal.sync(); // ensure that flush marker is sync'ed
} catch (IOException ioe) {
LOG.warn("Unexpected exception while wal.sync(), ignoring. Exception: "
+ StringUtils.stringifyException(ioe));
}
} // wait for all in-progress transactions to commit to WAL before
// we can start the flush. This prevents
// uncommitted transactions from being written into HFiles.
// We have to block before we start the flush, otherwise keys that
// were removed via a rollbackMemstore could be written to Hfiles.
w.setWriteNumber(flushOpSeqId);
mvcc.waitForPreviousTransactionsComplete(w);
// set w to null to prevent mvcc.advanceMemstore from being called again inside finally block
w = null;
} finally {
if (w != null) {
// in case of failure just mark current w as complete
mvcc.advanceMemstore(w);
}
}
return new PrepareFlushResult(storeFlushCtxs, committedFiles, startTime, flushOpSeqId,
flushedSeqId, totalFlushableSizeOfFlushableStores);
在具体看StoreFlushContext.prepare()之前,我们先看一下StoreFlushContext接口的说明,如上所述,StoreFlushImpl是Store的内部类,继承自StoreFlushContext。
interface StoreFlushContext { void prepare(); void flushCache(MonitoredTask status) throws IOException; boolean commit(MonitoredTask status) throws IOException; void replayFlush(List<String> fileNames, boolean dropMemstoreSnapshot) throws IOException; void abort() throws IOException; List<Path> getCommittedFiles();
}
现在我们回过头来继续看internalPrepareFlushcache中标红的flush.prepare();
public void prepare() {
//在region调用storeFlusherImpl的prepare的时候,前面提到是在region的update.write.lock中的,因此这里面所有的耗时操作都会影响业务正在进行的读写操作.
//在snapshot中的逻辑中只是将memstore的跳跃表赋值给snapshot的跳跃表,在返回memstoresnapshot的时候,调用的snapshot的size()方法
this.snapshot = memstore.snapshot();
//MemstoreSnapshot的getCellsCount方法即在memstore的shapshot中返回的MemStoresnapshot中传入的snapshot.size()值,时间复杂度是o(n)
this.cacheFlushCount = snapshot.getCellsCount();
this.cacheFlushSize = snapshot.getSize();
committedFiles = new ArrayList<Path>(1);
}
我们看下memstore的snapshot方法
public MemStoreSnapshot snapshot() {
// If snapshot currently has entries, then flusher failed or didn't call
// cleanup. Log a warning.
if (!this.snapshot.isEmpty()) {
LOG.warn("Snapshot called again without clearing previous. " +
"Doing nothing. Another ongoing flush or did we fail last attempt?");
} else {
this.snapshotId = EnvironmentEdgeManager.currentTime();
//memstore使用的mem大小
this.snapshotSize = keySize();
if (!this.cellSet.isEmpty()) {
//这里的cellset就是memstore内存中的数据
this.snapshot = this.cellSet;
//构造一个新的cellset存储数据
this.cellSet = new CellSkipListSet(this.comparator);
this.snapshotTimeRangeTracker = this.timeRangeTracker;
this.timeRangeTracker = new TimeRangeTracker();
// Reset heap to not include any keys
this.size.set(DEEP_OVERHEAD);
this.snapshotAllocator = this.allocator;
// Reset allocator so we get a fresh buffer for the new memstore
if (allocator != null) {
String className = conf.get(MSLAB_CLASS_NAME, HeapMemStoreLAB.class.getName());
this.allocator = ReflectionUtils.instantiateWithCustomCtor(className,
new Class[] { Configuration.class }, new Object[] { conf });
}
timeOfOldestEdit = Long.MAX_VALUE;
}
}
prepare中的snapshot.getCellsCount();我们重点说一下,hbase的内存存储写入的数据使用的是跳跃表的数据结构,实现是使用jdk自带的ConcurrentSkipListMap。在hbase的MemStore(默认是DefaultMemStore)实现中有两个环境变量,分别是ConcurrentSkipListMap类型的cellset和snapshot。cellset用来存储写入到memstore的数据,snapshot是在flush的第一阶段是将cellset赋值用的。因此这个的getCellsCount()方法最终调用的是concurrentSkipListMap.size(),concurrentSkipListMap并没有一个原子变量来报错map的大小,因为这里为了并发,同时该操作也不常用。因此concurrentSkipListMap.size()是遍历整个跳跃表获取size大小。
继续回到internalPrepareFlushCache中,对每一个store调用完prepare后,就将updatelock进行unlock。并返回一个PrepareFlushResult。继续往上走,
回到internalFlushCache方法。执行完internalPrepareFlushcache后走的是internalFlushAndCommit方法。继续跟进:
protected FlushResult internalFlushCacheAndCommit(
final WAL wal, MonitoredTask status, final PrepareFlushResult prepareResult,
final Collection<Store> storesToFlush)
throws IOException { // prepare flush context is carried via PrepareFlushResult
//进行flush的store的cf:storeFlushImpl映射
TreeMap<byte[], StoreFlushContext> storeFlushCtxs = prepareResult.storeFlushCtxs;
//flush生成的hfile的路径,当前key是有的,为cf,但是List<Path>为null,是在internalPrepareFlushCache中初始化的
TreeMap<byte[], List<Path>> committedFiles = prepareResult.committedFiles;
long startTime = prepareResult.startTime;
long flushOpSeqId = prepareResult.flushOpSeqId;
long flushedSeqId = prepareResult.flushedSeqId;
long totalFlushableSizeOfFlushableStores = prepareResult.totalFlushableSize; String s = "Flushing stores of " + this;
status.setStatus(s);
if (LOG.isTraceEnabled()) LOG.trace(s); // Any failure from here on out will be catastrophic requiring server
// restart so wal content can be replayed and put back into the memstore.
// Otherwise, the snapshot content while backed up in the wal, it will not
// be part of the current running servers state.
boolean compactionRequested = false;
try {
// A. Flush memstore to all the HStores.
// Keep running vector of all store files that includes both old and the
// just-made new flush store file. The new flushed file is still in the
// tmp directory.
//迭代region下的每一个store,调用HStore.storeFlushImpl.flushCache方法,把store中snapshot的数据flush到hfile中,当然这里是flush到temp文件中,最终是通过commit将其移到正确的路径下
//
//
for (StoreFlushContext flush : storeFlushCtxs.values()) {
flush.flushCache(status);
} // Switch snapshot (in memstore) -> new hfile (thus causing
// all the store scanners to reset/reseek).
Iterator<Store> it = storesToFlush.iterator();
// stores.values() and storeFlushCtxs have same order
for (StoreFlushContext flush : storeFlushCtxs.values()) {
boolean needsCompaction = flush.commit(status);
if (needsCompaction) {
compactionRequested = true;
}
committedFiles.put(it.next().getFamily().getName(), flush.getCommittedFiles());
}
storeFlushCtxs.clear(); // Set down the memstore size by amount of flush.
this.addAndGetGlobalMemstoreSize(-totalFlushableSizeOfFlushableStores); if (wal != null) {
// write flush marker to WAL. If fail, we should throw DroppedSnapshotException
FlushDescriptor desc = ProtobufUtil.toFlushDescriptor(FlushAction.COMMIT_FLUSH,
getRegionInfo(), flushOpSeqId, committedFiles);
WALUtil.writeFlushMarker(wal, this.htableDescriptor, getRegionInfo(),
desc, sequenceId, true);
}
} catch (Throwable t) {
// An exception here means that the snapshot was not persisted.
// The wal needs to be replayed so its content is restored to memstore.
// Currently, only a server restart will do this.
// We used to only catch IOEs but its possible that we'd get other
// exceptions -- e.g. HBASE-659 was about an NPE -- so now we catch
// all and sundry.
if (wal != null) {
try {
FlushDescriptor desc = ProtobufUtil.toFlushDescriptor(FlushAction.ABORT_FLUSH,
getRegionInfo(), flushOpSeqId, committedFiles);
WALUtil.writeFlushMarker(wal, this.htableDescriptor, getRegionInfo(),
desc, sequenceId, false);
} catch (Throwable ex) {
LOG.warn("Received unexpected exception trying to write ABORT_FLUSH marker to WAL:" +
StringUtils.stringifyException(ex));
// ignore this since we will be aborting the RS with DSE.
}
wal.abortCacheFlush(this.getRegionInfo().getEncodedNameAsBytes());
}
DroppedSnapshotException dse = new DroppedSnapshotException("region: " +
Bytes.toStringBinary(getRegionName()));
dse.initCause(t);
status.abort("Flush failed: " + StringUtils.stringifyException(t));
throw dse;
} // If we get to here, the HStores have been written.
if (wal != null) {
wal.completeCacheFlush(this.getRegionInfo().getEncodedNameAsBytes());
} // Record latest flush time
for (Store store : storesToFlush) {
this.lastStoreFlushTimeMap.put(store, startTime);
} // Update the oldest unflushed sequence id for region.
this.maxFlushedSeqId = flushedSeqId; // C. Finally notify anyone waiting on memstore to clear:
// e.g. checkResources().
synchronized (this) {
notifyAll(); // FindBugs NN_NAKED_NOTIFY
} long time = EnvironmentEdgeManager.currentTime() - startTime;
long memstoresize = this.memstoreSize.get();
String msg = "Finished memstore flush of ~"
+ StringUtils.byteDesc(totalFlushableSizeOfFlushableStores) + "/"
+ totalFlushableSizeOfFlushableStores + ", currentsize="
+ StringUtils.byteDesc(memstoresize) + "/" + memstoresize
+ " for region " + this + " in " + time + "ms, sequenceid="
+ flushOpSeqId + ", compaction requested=" + compactionRequested
+ ((wal == null) ? "; wal=null" : "");
LOG.info(msg);
status.setStatus(msg); return new FlushResult(compactionRequested ? FlushResult.Result.FLUSHED_COMPACTION_NEEDED :
FlushResult.Result.FLUSHED_NO_COMPACTION_NEEDED, flushOpSeqId);
}
我们就只看其中两个方法:flush.flushcache和flush.commit。这里的flush即StoreFlushImpl。flushcache方法是用来执行第二阶段,commit用来执行第三阶段。
public void flushCache(MonitoredTask status) throws IOException {
//返回的是snapshotflush到临时文件后,最终需要移到的正确路径
tempFiles = HStore.this.flushCache(cacheFlushSeqNum, snapshot, status);
}
转到store的flushcache方法
protected List<Path> flushCache(final long logCacheFlushId, MemStoreSnapshot snapshot,
MonitoredTask status) throws IOException {
// If an exception happens flushing, we let it out without clearing
// the memstore snapshot. The old snapshot will be returned when we say
// 'snapshot', the next time flush comes around.
// Retry after catching exception when flushing, otherwise server will abort
// itself
StoreFlusher flusher = storeEngine.getStoreFlusher();
IOException lastException = null;
for (int i = 0; i < flushRetriesNumber; i++) {
try {
//调用StoreFlusher.flushsnapshot方法将snapshotflush到temp文件
List<Path> pathNames = flusher.flushSnapshot(snapshot, logCacheFlushId, status);
Path lastPathName = null;
try {
for (Path pathName : pathNames) {
lastPathName = pathName;
validateStoreFile(pathName);
}
return pathNames;
} catch (Exception e) {
LOG.warn("Failed validating store file " + lastPathName + ", retrying num=" + i, e);
if (e instanceof IOException) {
lastException = (IOException) e;
} else {
lastException = new IOException(e);
}
}
} catch (IOException e) {
LOG.warn("Failed flushing store file, retrying num=" + i, e);
lastException = e;
}
if (lastException != null && i < (flushRetriesNumber - 1)) {
try {
Thread.sleep(pauseTime);
} catch (InterruptedException e) {
IOException iie = new InterruptedIOException();
iie.initCause(e);
throw iie;
}
}
}
throw lastException;
}
其中标红的部分是主要的逻辑。首先通过storeEngine.getStoreFlusher获取flush的实例,实际包括了sync到disk的writer以及append等操作。这里不再展开说明。我们重点看一下for循环中的flusher.flushSnapshot方法,涉及到一个重要的环境变量cellsCount。
public List<Path> flushSnapshot(MemStoreSnapshot snapshot, long cacheFlushId,
MonitoredTask status) throws IOException {
ArrayList<Path> result = new ArrayList<Path>();
//这里会调用snapshot的getCellsCount方法,之所以这里提了这个方法,是因为其实一个prepare阶段耗时较大的过程。
int cellsCount = snapshot.getCellsCount();
if (cellsCount == 0) return result; // don't flush if there are no entries // Use a store scanner to find which rows to flush.
long smallestReadPoint = store.getSmallestReadPoint();
InternalScanner scanner = createScanner(snapshot.getScanner(), smallestReadPoint);
if (scanner == null) {
return result; // NULL scanner returned from coprocessor hooks means skip normal processing
} StoreFile.Writer writer;
try {
// TODO: We can fail in the below block before we complete adding this flush to
// list of store files. Add cleanup of anything put on filesystem if we fail.
synchronized (flushLock) {
status.setStatus("Flushing " + store + ": creating writer");
// Write the map out to the disk
//这里传入的cellsCount实际并没有用,可能是预置的变量?
writer = store.createWriterInTmp(
cellsCount, store.getFamily().getCompression(), false, true, true);
writer.setTimeRangeTracker(snapshot.getTimeRangeTracker());
IOException e = null;
try {
//真正的将snapshot写入临时文件
performFlush(scanner, writer, smallestReadPoint);
} catch (IOException ioe) {
e = ioe;
// throw the exception out
throw ioe;
} finally {
if (e != null) {
writer.close();
} else {
finalizeWriter(writer, cacheFlushId, status);
}
}
}
} finally {
scanner.close();
}
LOG.info("Flushed, sequenceid=" + cacheFlushId +", memsize="
+ StringUtils.humanReadableInt(snapshot.getSize()) +
", hasBloomFilter=" + writer.hasGeneralBloom() +
", into tmp file " + writer.getPath());
result.add(writer.getPath());
return result;
}
可以看到store.createWriterInTmp中使用了该变量,继续跟进
public StoreFile.Writer createWriterInTmp(long maxKeyCount, Compression.Algorithm compression,
boolean isCompaction, boolean includeMVCCReadpoint, boolean includesTag)
throws IOException {
。。。。。忽略不重要逻辑。。。。。
//这里传入的maxkeyCount没有用
StoreFile.Writer w = new StoreFile.WriterBuilder(conf, writerCacheConf,
this.getFileSystem())
.withFilePath(fs.createTempName())
.withComparator(comparator)
.withBloomType(family.getBloomFilterType())
.withMaxKeyCount(maxKeyCount)
.withFavoredNodes(favoredNodes)
.withFileContext(hFileContext)
.build();
return w;
}
可见将cellscount以参数的形式传给了writer。然后执行performFlush方法,该方法通过scanner遍历,然后使用hfile.writer将数据罗盘。我们看一下Writer中将cellscount用来干啥了。在整个writer中只有这两个地方用到了
generalBloomFilterWriter = BloomFilterFactory.createGeneralBloomAtWrite(
conf, cacheConf, bloomType,
(int) Math.min(maxKeys, Integer.MAX_VALUE), writer);
this.deleteFamilyBloomFilterWriter = BloomFilterFactory
.createDeleteBloomAtWrite(conf, cacheConf,
(int) Math.min(maxKeys, Integer.MAX_VALUE), writer);
继续跟进这两个
public static BloomFilterWriter createDeleteBloomAtWrite(Configuration conf,
CacheConfig cacheConf, int maxKeys, HFile.Writer writer) {
if (!isDeleteFamilyBloomEnabled(conf)) {
LOG.info("Delete Bloom filters are disabled by configuration for "
+ writer.getPath()
+ (conf == null ? " (configuration is null)" : ""));
return null;
} float err = getErrorRate(conf); int maxFold = getMaxFold(conf);
// In case of compound Bloom filters we ignore the maxKeys hint.
CompoundBloomFilterWriter bloomWriter = new CompoundBloomFilterWriter(getBloomBlockSize(conf),
err, Hash.getHashType(conf), maxFold, cacheConf.shouldCacheBloomsOnWrite(),
KeyValue.RAW_COMPARATOR);
writer.addInlineBlockWriter(bloomWriter);
return bloomWriter;
}
可见maxKeys没有使用,另一个方法同理,所以这里的cellscount变量在flush的第二阶段没有使用。
到现在为止我们判断出在第二阶段cellcount没有使用,我们继续跟进第三阶段:回到internalFlushAndCOmmit中的flush.commit(status)
public boolean commit(MonitoredTask status) throws IOException {
if (this.tempFiles == null || this.tempFiles.isEmpty()) {
return false;
}
List<StoreFile> storeFiles = new ArrayList<StoreFile>(this.tempFiles.size());
for (Path storeFilePath : tempFiles) {
try {
storeFiles.add(HStore.this.commitFile(storeFilePath, cacheFlushSeqNum, status));
} catch (IOException ex) {
LOG.error("Failed to commit store file " + storeFilePath, ex);
// Try to delete the files we have committed before.
for (StoreFile sf : storeFiles) {
Path pathToDelete = sf.getPath();
try {
sf.deleteReader();
} catch (IOException deleteEx) {
LOG.fatal("Failed to delete store file we committed, halting " + pathToDelete, ex);
Runtime.getRuntime().halt(1);
}
}
throw new IOException("Failed to commit the flush", ex);
}
} for (StoreFile sf : storeFiles) {
if (HStore.this.getCoprocessorHost() != null) {
HStore.this.getCoprocessorHost().postFlush(HStore.this, sf);
}
committedFiles.add(sf.getPath());
} HStore.this.flushedCellsCount += cacheFlushCount;
HStore.this.flushedCellsSize += cacheFlushSize; // Add new file to store files. Clear snapshot too while we have the Store write lock.
return HStore.this.updateStorefiles(storeFiles, snapshot.getId());
}
第三阶段比较简单,将flush的文件移动到hdfs正确的路径下。同时可见在这里用到了cellscount。这里是赋值给store的flushedCellsCount,这里主要是用来进行metric收集flushedCellsSize的。根据经验这个metric可忽略,未使用过。
总结
这里之所以总是提到cellscount变量,是因为给其赋值调用ConcurrentSkipListMap.size()方法在flush的第一阶段中最耗时的,同时持有hbase region 级别的updatelock,但是通过梳理并没有太大的用处,可以干掉。否则会因此一些毛刺,pct99比较高。已有patch,但是是应用在2.+的版本的、
整个flush的流程就结束了,如有不对的地方,欢迎指正。欢迎加微信相互交流:940184856