题意:求一个区间内满足所有数位不同数字个数小于K的数字总和。比如:k=2 1,2,3所有数位的不同数字的个数为1满足,但是123数位上有三个不同的数字,即123不满足。
我们可以使用一个二进制的数字来记录某个数字是否已经出现,0为还没有出现,1表示该数字已经出现了。这里还需要注意前导零的干扰。
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<stack>
#include<cstdio>
#include<map>
#include<set>
#include<string>
#include<queue>
using namespace std;
#define inf 0x3f3f3f3f
#define ri register int
typedef long long ll; inline ll gcd(ll i,ll j){
return j==0?i:gcd(j,i%j);
}
inline ll lcm(ll i,ll j){
return i/gcd(i,j)*j;
}
inline void output(int x){
if(x==0){putchar(48);return;}
int len=0,dg[20];
while(x>0){dg[++len]=x%10;x/=10;}
for(int i=len;i>=1;i--)putchar(dg[i]+48);
}
inline void read(int &x){
char ch=x=0;
int f=1;
while(!isdigit(ch)){
ch=getchar();
if(ch=='-'){
f=-1;
}
}
while(isdigit(ch))
x=x*10+ch-'0',ch=getchar();
x=x*f;
}
struct st{
ll num;
ll sum;
st():num(0),sum(0){
}
st(ll num,ll sum):num(num),sum(sum){
}
}dp[20][2000];
int maxs;
int a[20];
const ll mod=998244353;
int change(int n){
int cnt=0;
while(n){
if(n&1)cnt++;
n/=2;
}
return cnt;
}
st dfs(int pos,int sta,int pre,bool limit){
if(pos==-1){
// cout<<pre<<endl; if(change(sta)<=maxs)
return st(1,0);
return st(0,0);
}
if(dp[pos][sta].num!=0&&!limit){
// printf("%d %lld\n",pos,dp[pos][sta].sum);
return dp[pos][sta];
}
int up=limit?a[pos]:9;
st ans; for(int i=0;i<=up;i++){
st tem;
if(change(sta|(int)pow(2,i))>maxs)
continue;
if(pre==0&&i==0){
tem=dfs(pos-1,sta,0,i==up&&limit);
}
else{
tem=dfs(pos-1,((int)pow(2,i))|sta,i,i==up&&limit);
}
ans.num+=tem.num;
ans.num=ans.num%mod;
ans.sum=(ans.sum+(ll)pow(10,pos)%mod*i*tem.num%mod+tem.sum)%mod;
}
if(!limit){
dp[pos][sta]=ans;
}
return ans;
}
ll solve(ll n){
int len=0;
while(n){
a[len++]=n%10;
n/=10;
}
return dfs(len-1,0,0,true).sum;
}
int main(){
ll l,r;
scanf("%lld%lld%d",&l,&r,&maxs);
printf("%lld",(solve(r)-solve(l-1)+mod)%mod);
return 0;
}