上篇《Spark(四十九):Spark On YARN启动流程源码分析(一)》我们讲到启动SparkContext初始化,ApplicationMaster启动资源中,讲解的内容明显不完整。
本章将针对yarn-cluster(--master yarn –deploy-mode cluster)模式下全面进行代码补充解读:
- 1)什么时候初始化SparkContext;
- 2)如何实现ApplicationMaster如何启动executor;
- 3)启动后如何通过rpc实现executor与driver端通信,并实现分配任务的功能。
Yarn-Cluster总体流程:
- 1)Spark Yarn Client向YARN中提交应用程序,包括ApplicationMaster程序、启动ApplicationMaster的命令、需要在Executor中运行的程序等;
- 2)ResourceManager收到请求后,在集群中选择一个NodeManager,为该应用程序分配第一个Container,要求它在这个Container中启动应用程序的ApplicationMaster,其中ApplicationMaster进行SparkContext等的初始化;
- 3)ApplicationMaster向ResourceManager注册,这样用户可以直接通过ResourceManage查看应用程序的运行状态,然后它将采用轮询的方式通过RPC协议为各个任务申请资源,并监控它们的运行状态直到运行结束;
- 4)一旦ApplicationMaster申请到资源(也就是Container)后,便与对应的NodeManager通信,要求它在获得的Container中启动CoarseGrainedExecutorBackend,CoarseGrainedExecutorBackend启动后会向ApplicationMaster中的SparkContext注册并申请Task。这一点和Standalone模式一样,只不过SparkContext在Spark Application中初始化时,使用CoarseGrainedSchedulerBackend配合YarnClusterScheduler进行任务的调度,其中YarnClusterScheduler只是对TaskSchedulerImpl的一个简单包装,增加了对Executor的等待逻辑等;
- 5)ApplicationMaster中的SparkContext分配Task给CoarseGrainedExecutorBackend执行,CoarseGrainedExecutorBackend运行Task并向ApplicationMaster汇报运行的状态和进度,以让ApplicationMaster随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务;
- 6)应用程序运行完成后,ApplicationMaster向ResourceManager申请注销并关闭自己。
SparkSubmit类流程:
使用spark-submit.sh提交任务:
#/bin/sh
#LANG=zh_CN.utf8
#export LANG
export SPARK_KAFKA_VERSION=0.10
export LANG=zh_CN.UTF-
jarspath=''
for file in `ls /home/dx/works/myapp001/sparks/*.jar`
do
jarspath=${file},$jarspath
done
jarspath=${jarspath%?}
echo $jarspath spark-submit \
--jars $jarspath \
--properties-file ./conf/spark-properties-myapp001.conf \
--verbose \
--master yarn \
--deploy-mode cluster \#或者client
--name Streaming-$1-$2-$3-$4-$5-Agg-Parser \
--num-executors 16 \
--executor-memory 6G \
--executor-cores 2 \
--driver-memory 2G \
--driver-java-options "-XX:+TraceClassPaths" \
--class com.dx.myapp001.Main \
/home/dx/works/myapp001/lib/application-jar.jar $1 $2 $3 $4 $5
运行spark-submit.sh,实际上执行的是org.apache.spark.deploy.SparkSubmit的main:
1)--master yarn --deploy-mode:cluster
调用YarnClusterApplication进行提交
YarnClusterApplication这是org.apache.spark.deploy.yarn.Client中的一个内部类,在YarnClusterApplication中new了一个Client对象,并调用了run方法
private[spark] class YarnClusterApplication extends SparkApplication {
override def start(args: Array[String], conf: SparkConf): Unit = {
// SparkSubmit would use yarn cache to distribute files & jars in yarn mode,
// so remove them from sparkConf here for yarn mode.
conf.remove("spark.jars")
conf.remove("spark.files") new Client(new ClientArguments(args), conf).run()
}
}
2)--master yarn --deploy-mode:client[可忽略]
调用application-jar.jar自身main函数,执行的是JavaMainApplication
/**
* Implementation of SparkApplication that wraps a standard Java class with a "main" method.
*
* Configuration is propagated to the application via system properties, so running multiple
* of these in the same JVM may lead to undefined behavior due to configuration leaks.
*/
private[deploy] class JavaMainApplication(klass: Class[_]) extends SparkApplication { override def start(args: Array[String], conf: SparkConf): Unit = {
val mainMethod = klass.getMethod("main", new Array[String](0).getClass)
if (!Modifier.isStatic(mainMethod.getModifiers)) {
throw new IllegalStateException("The main method in the given main class must be static")
} val sysProps = conf.getAll.toMap
sysProps.foreach { case (k, v) =>
sys.props(k) = v
} mainMethod.invoke(null, args)
} }
从JavaMainApplication实现可以发现,JavaSparkApplication中调用start方法时,只是通过反射执行application-jar.jar的main函数。
YarnClusterApplication运行流程
当yarn-custer模式中,YarnClusterApplication类中运行的是Client中run方法,Client#run()中实现了任务提交流程:
/**
* Submit an application to the ResourceManager.
* If set spark.yarn.submit.waitAppCompletion to true, it will stay alive
* reporting the application's status until the application has exited for any reason.
* Otherwise, the client process will exit after submission.
* If the application finishes with a failed, killed, or undefined status,
* throw an appropriate SparkException.
*/
def run(): Unit = {
this.appId = submitApplication()
if (!launcherBackend.isConnected() && fireAndForget) {
val report = getApplicationReport(appId)
val state = report.getYarnApplicationState
logInfo(s"Application report for $appId (state: $state)")
logInfo(formatReportDetails(report))
if (state == YarnApplicationState.FAILED || state == YarnApplicationState.KILLED) {
throw new SparkException(s"Application $appId finished with status: $state")
}
} else {
val YarnAppReport(appState, finalState, diags) = monitorApplication(appId)
if (appState == YarnApplicationState.FAILED || finalState == FinalApplicationStatus.FAILED) {
diags.foreach { err =>
logError(s"Application diagnostics message: $err")
}
throw new SparkException(s"Application $appId finished with failed status")
}
if (appState == YarnApplicationState.KILLED || finalState == FinalApplicationStatus.KILLED) {
throw new SparkException(s"Application $appId is killed")
}
if (finalState == FinalApplicationStatus.UNDEFINED) {
throw new SparkException(s"The final status of application $appId is undefined")
}
}
}
其中run的方法流程:
1) 运行submitApplication()初始化yarn,使用yarn进行资源管理,并运行spark任务提交接下来的流程:分配driver container,然后在Driver Containe中启动ApplicaitonMaster,ApplicationMaster中初始化SparkContext。
2) 状态成功,上报执行进度等信息。
3) 状态失败,报告执行失败。
其中submitApplication()的实现流程:
/**
* Submit an application running our ApplicationMaster to the ResourceManager.
*
* The stable Yarn API provides a convenience method (YarnClient#createApplication) for
* creating applications and setting up the application submission context. This was not
* available in the alpha API.
*/
def submitApplication(): ApplicationId = {
var appId: ApplicationId = null
try {
launcherBackend.connect()
yarnClient.init(hadoopConf)
yarnClient.start() logInfo("Requesting a new application from cluster with %d NodeManagers"
.format(yarnClient.getYarnClusterMetrics.getNumNodeManagers)) // Get a new application from our RM
val newApp = yarnClient.createApplication()
val newAppResponse = newApp.getNewApplicationResponse()
appId = newAppResponse.getApplicationId() new CallerContext("CLIENT", sparkConf.get(APP_CALLER_CONTEXT),
Option(appId.toString)).setCurrentContext() // Verify whether the cluster has enough resources for our AM
verifyClusterResources(newAppResponse) // Set up the appropriate contexts to launch our AM
val containerContext = createContainerLaunchContext(newAppResponse)
val appContext = createApplicationSubmissionContext(newApp, containerContext) // Finally, submit and monitor the application
logInfo(s"Submitting application $appId to ResourceManager")
yarnClient.submitApplication(appContext)
launcherBackend.setAppId(appId.toString)
reportLauncherState(SparkAppHandle.State.SUBMITTED) appId
} catch {
case e: Throwable =>
if (appId != null) {
cleanupStagingDir(appId)
}
throw e
}
}
这段代码主要实现向ResourceManager申请资源,启动Container并运行ApplicationMaster。
其中createContainerLaunchContext(newAppResponse)中对应的启动主类amClass分支逻辑如下:
val amClass =
if (isClusterMode) {
Utils.classForName("org.apache.spark.deploy.yarn.ApplicationMaster").getName
} else {
Utils.classForName("org.apache.spark.deploy.yarn.ExecutorLauncher").getName
}
当yarn-cluster模式下,会先通过Client#run()方法中调用Client#submitApplication()向Yarn的Resource Manager申请一个container,来启动ApplicationMaster。
启动ApplicationMaster的执行脚本示例:
[dx@hadoop143 bin]$ps -ef|grep ApplicationMaster
# yarn账户在执行
/bin/bash -c /usr/java/jdk1..0_171-amd64/bin/java \
-server \
-Xmx2048m \
-Djava.io.tmpdir=/mnt/data3/yarn/nm/usercache/dx/appcache/application_1554704591622_0340/container_1554704591622_0340_01_000001/tmp \
-Dspark.yarn.app.container.log.dir=/mnt/data4/yarn/container-logs/application_1554704591622_0340/container_1554704591622_0340_01_000001 \
org.apache.spark.deploy.yarn.ApplicationMaster \
--class 'com.dx.myapp001.Main' \
--jar file:/home/dx/works/myapp001/lib/application-jar.jar \
--arg '-type' \
--arg '' \
--properties-file /mnt/data3/yarn/nm/usercache/dx/appcache/application_1554704591622_0340/container_1554704591622_0340_01_000001/__spark_conf__/__spark_conf__.properties \
> /mnt/data4/yarn/container-logs/application_1554704591622_0340/container_1554704591622_0340_01_000001/stdout \
> /mnt/data4/yarn/container-logs/application_1554704591622_0340/container_1554704591622_0340_01_000001/stderr
ApplicationMaster运行流程
ApplicaitonMaster启动过程会通过半生类ApplicationMaster的main作为入口,执行:
private var master: ApplicationMaster = _ def main(args: Array[String]): Unit = {
SignalUtils.registerLogger(log)
val amArgs = new ApplicationMasterArguments(args)
master = new ApplicationMaster(amArgs)
System.exit(master.run())
}
通过ApplicationMasterArguments类对args进行解析,然后将解析后的amArgs作为master初始化的参数,并执行master#run()方法启动ApplicationMaster。
ApplicationMaster实例化
在ApplicationMaster类实例化中,ApplicationMaster的属性包含以下:
private val isClusterMode = args.userClass != null private val sparkConf = new SparkConf()
if (args.propertiesFile != null) {
Utils.getPropertiesFromFile(args.propertiesFile).foreach { case (k, v) =>
sparkConf.set(k, v)
}
} private val securityMgr = new SecurityManager(sparkConf) private var metricsSystem: Option[MetricsSystem] = None // Set system properties for each config entry. This covers two use cases:
// - The default configuration stored by the SparkHadoopUtil class
// - The user application creating a new SparkConf in cluster mode
//
// Both cases create a new SparkConf object which reads these configs from system properties.
sparkConf.getAll.foreach { case (k, v) =>
sys.props(k) = v
} private val yarnConf = new YarnConfiguration(SparkHadoopUtil.newConfiguration(sparkConf)) private val userClassLoader = {
val classpath = Client.getUserClasspath(sparkConf)
val urls = classpath.map { entry =>
new URL("file:" + new File(entry.getPath()).getAbsolutePath())
} if (isClusterMode) {
if (Client.isUserClassPathFirst(sparkConf, isDriver = true)) {
new ChildFirstURLClassLoader(urls, Utils.getContextOrSparkClassLoader)
} else {
new MutableURLClassLoader(urls, Utils.getContextOrSparkClassLoader)
}
} else {
new MutableURLClassLoader(urls, Utils.getContextOrSparkClassLoader)
}
} private val client = doAsUser { new YarnRMClient() }
private var rpcEnv: RpcEnv = null // In cluster mode, used to tell the AM when the user's SparkContext has been initialized.
private val sparkContextPromise = Promise[SparkContext]()
ApplicationMaster属性解释:
- --isClusterMode是否cluster模式,userClass有值则为true(来自ApplicationMaster参数--class 'com.dx.myapp001.Main' )
- --sparkConf spark运行配置,配置信息来自args.propertiesFile(来自ApplicationMaster的参数--properties-file /mnt/data3/yarn/nm/usercache/dx/appcache/application_1554704591622_0340/container_1554704591622_0340_01_000001/__spark_conf__/__spark_conf__.properties)
- --securityMgr安全管理类,初始化时需要传入sparkConf对象
- --metricsSystem是测量系统初始化,用来记录执行进度,资源等信息。
- --client是YarnRMClient的对象,它主要用来使用YARN ResourceManager处理注册和卸载application。https://github.com/apache/spark/blob/branch-2.4/resource-managers/yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnRMClient.scala
- --userClassLoader用户类加载器,从sparkConf中获取application的jar路径(实际来此ApplicationMaster初始化接收参数),为后边通过它的main运行做辅助。
- --userClassThread用来执行application main的线程
- --rpcEnvrpc通信环境对象
- --sparkContextPromise在cluster模式,当用户(application)的SparkContext对象已经被初始化用来通知ApplicationMaster
ApplicationMaster执行Run方法
ApplicationMaster#run()->ApplicationMaster#runImpl,在ApplicationMaster#runImpl方法中包含以下比较重要分支逻辑:
if (isClusterMode) {
runDriver()
} else {
runExecutorLauncher()
}
因为args.userClass不为null,因此isCusterMode为true,则执行runDriver()方法。
ApplicationMaster#runDriver如下:
private def runDriver(): Unit = {
addAmIpFilter(None)
userClassThread = startUserApplication() // This a bit hacky, but we need to wait until the spark.driver.port property has
// been set by the Thread executing the user class.
logInfo("Waiting for spark context initialization...")
val totalWaitTime = sparkConf.get(AM_MAX_WAIT_TIME)
try {
val sc = ThreadUtils.awaitResult(sparkContextPromise.future,
Duration(totalWaitTime, TimeUnit.MILLISECONDS))
if (sc != null) {
rpcEnv = sc.env.rpcEnv val userConf = sc.getConf
val host = userConf.get("spark.driver.host")
val port = userConf.get("spark.driver.port").toInt
registerAM(host, port, userConf, sc.ui.map(_.webUrl)) val driverRef = rpcEnv.setupEndpointRef(
RpcAddress(host, port),
YarnSchedulerBackend.ENDPOINT_NAME)
createAllocator(driverRef, userConf)
} else {
// Sanity check; should never happen in normal operation, since sc should only be null
// if the user app did not create a SparkContext.
throw new IllegalStateException("User did not initialize spark context!")
}
resumeDriver()
userClassThread.join()
} catch {
case e: SparkException if e.getCause().isInstanceOf[TimeoutException] =>
logError(
s"SparkContext did not initialize after waiting for $totalWaitTime ms. " +
"Please check earlier log output for errors. Failing the application.")
finish(FinalApplicationStatus.FAILED,
ApplicationMaster.EXIT_SC_NOT_INITED,
"Timed out waiting for SparkContext.")
} finally {
resumeDriver()
}
}
其执行流程如下:
1) 初始化userClassThread=startUserApplication(),运行用户定义的代码,通过反射运行application_jar.jar(sparksubmit命令中--class指定的类)的main函数;
2) 初始化SparkContext,通过sparkContextPromise来获取初始化SparkContext,并设定最大等待时间。
a) 这也充分证实了driver是运行在ApplicationMaster上(SparkContext相当于driver);
b) 该SparkContext的真正初始化是在application_jar.jar的代码中执行,通过反射执行的。
3) resumeDriver()当初始化SparkContext完成后,恢复用户线程。
4) userClassThread.join()阻塞方式等待反射application_jar.jar的main执行完成。
提问:SparkContext初始化后是如何被ApplicationMaster主线程获取到的?
在spark-submit任务提交过程中,当采用spark-submit --master yarn --deploy-mode cluster时,SparkContext(driver)初始化是在ApplicationMaster中子线程中,SparkContext初始化是运行在该
@volatile private var userClassThread: Thread = _
// In cluster mode, used to tell the AM when the user's SparkContext has been initialized.
private val sparkContextPromise = Promise[SparkContext]()
线程下
val sc = ThreadUtils.awaitResult(sparkContextPromise.future,
Duration(totalWaitTime, TimeUnit.MILLISECONDS))
sparkContextPromise是怎么拿到userClassThread(反射执行用户代码线程)中的SparkContext的实例呢?
回答:
这个是在SparkContext初始化TaskScheduler时,yarn-cluster模式对应的是YarnClusterScheduler,它里边有一个后启动钩子:
/**
* This is a simple extension to ClusterScheduler - to ensure that appropriate initialization of
* ApplicationMaster, etc is done
*/
private[spark] class YarnClusterScheduler(sc: SparkContext) extends YarnScheduler(sc) { logInfo("Created YarnClusterScheduler") override def postStartHook() {
ApplicationMaster.sparkContextInitialized(sc)
super.postStartHook()
logInfo("YarnClusterScheduler.postStartHook done")
} }
调用的ApplicationMaster.sparkContextInitialized()方法把SparkContext实例赋给前面的Promise对象:
private def sparkContextInitialized(sc: SparkContext) = {
sparkContextPromise.synchronized {
// Notify runDriver function that SparkContext is available
sparkContextPromise.success(sc)
// Pause the user class thread in order to make proper initialization in runDriver function.
sparkContextPromise.wait()
}
}
然后userClassThread是调用startUserApplication()方法产生的,这之后就是列举的那一句:
val sc = ThreadUtils.awaitResult(sparkContextPromise.future,
Duration(totalWaitTime, TimeUnit.MILLISECONDS))
这句就是在超时时间内等待sparkContextPromise的Future对象返回SparkContext实例。
其实可以理解为下边这个模拟代码:
object App {
def main(args: Array[String]): Unit = {
val userClassThread = startUserApplication()
val totalWaitTime = 15000
try {
val sc = ThreadUtils.awaitResult(sparkContextPromise.future,
Duration(totalWaitTime, TimeUnit.MILLISECONDS))
if (sc != null) {
println("the sc has initialized")
val rpcEnv = sc.env.rpcEnv val userConf = sc.getConf
val host = userConf.get("spark.driver.host")
val port = userConf.get("spark.driver.port").toInt
} else {
// Sanity check; should never happen in normal operation, since sc should only be null
// if the user app did not create a SparkContext.
throw new IllegalStateException("User did not initialize spark context!")
}
resumeDriver()
userClassThread.join()
} catch {
case e: SparkException if e.getCause().isInstanceOf[TimeoutException] =>
println(
s"SparkContext did not initialize after waiting for $totalWaitTime ms. " +
"Please check earlier log output for errors. Failing the application.")
} finally {
resumeDriver()
}
} /**
* Start the user class, which contains the spark driver, in a separate Thread.
* If the main routine exits cleanly or exits with System.exit(N) for any N
* we assume it was successful, for all other cases we assume failure.
*
* Returns the user thread that was started.
*/
private def startUserApplication(): Thread = {
val userThread = new Thread {
override def run() {
try {
val conf = new SparkConf().setMaster("local[*]").setAppName("appName")
val sc = new SparkContext(conf)
sparkContextInitialized(sc)
} catch {
case e: Exception =>
sparkContextPromise.tryFailure(e.getCause())
} finally {
sparkContextPromise.trySuccess(null)
}
}
} userThread.setName("Driver")
userThread.start()
userThread
} // In cluster mode, used to tell the AM when the user's SparkContext has been initialized.
private val sparkContextPromise = Promise[SparkContext]() private def resumeDriver(): Unit = {
// When initialization in runDriver happened the user class thread has to be resumed.
sparkContextPromise.synchronized {
sparkContextPromise.notify()
}
} private def sparkContextInitialized(sc: SparkContext) = {
sparkContextPromise.synchronized {
// Notify runDriver function that SparkContext is available
sparkContextPromise.success(sc)
// Pause the user class thread in order to make proper initialization in runDriver function.
sparkContextPromise.wait()
}
}
}
SparkContext初始化后注册AM,申请Container启动Executor
ApplicationMaster#runDriver中逻辑包含内容挺多,因此单独提到这个小节来讲解。
val totalWaitTime = sparkConf.get(AM_MAX_WAIT_TIME)
try {
val sc = ThreadUtils.awaitResult(sparkContextPromise.future,
Duration(totalWaitTime, TimeUnit.MILLISECONDS))
if (sc != null) {
rpcEnv = sc.env.rpcEnv val userConf = sc.getConf
val host = userConf.get("spark.driver.host")
val port = userConf.get("spark.driver.port").toInt
registerAM(host, port, userConf, sc.ui.map(_.webUrl)) val driverRef = rpcEnv.setupEndpointRef(
RpcAddress(host, port),
YarnSchedulerBackend.ENDPOINT_NAME)
createAllocator(driverRef, userConf)
} else {
// Sanity check; should never happen in normal operation, since sc should only be null
// if the user app did not create a SparkContext.
throw new IllegalStateException("User did not initialize spark context!")
}
resumeDriver()
userClassThread.join()
} catch {
case e: SparkException if e.getCause().isInstanceOf[TimeoutException] =>
logError(
s"SparkContext did not initialize after waiting for $totalWaitTime ms. " +
"Please check earlier log output for errors. Failing the application.")
finish(FinalApplicationStatus.FAILED,
ApplicationMaster.EXIT_SC_NOT_INITED,
"Timed out waiting for SparkContext.")
} finally {
resumeDriver()
}
ü SparkContext初始化过程,通过startUserApplication()反射application_jar.jar(用来代码)中的main初始化SparkContext。
ü 如果SparkContext初始化成功,就进入:
i. 给rpcEnv赋值为初始化的SparkContext对象sc的env对象的rpcEnv.
ii. 从sc获取到userConf(SparkConf),driver host,driver port,sc.ui,并将他们作为registerAM(注册ApplicationMaster)的参数。
iii. 根据driver host、driver port和driver rpc server名称YarnSchedulerBackend.ENDPOINT_NAME获取到driver的EndpointRef对象driverRef。
iv. 调用createAllocator(driverRef, userConf)
v. resumeDriver() ---SparkContext初始化线程释放信号量(或者归还主线程)
vi. userClassThread.join()等待运行application_jar.jar的程序运行完成。
ü 如果SparkContext初始化失败,则抛出异常throw new IllegalStateException("User did not initialize spark context!")
向RM(ResourceManager)注册AM
初始化SparkContext成功后将返回sc(SparkContext实例对象),然后从sc中获取到userConf(SparkConf),driver host,driver port,sc.ui,并将它们作为registerAM()方法的参数。其中registerAM()方法就是注册AM(ApplicationMaster)。
private val client = doAsUser { new YarnRMClient() } private def registerAM(
host: String,
port: Int,
_sparkConf: SparkConf,
uiAddress: Option[String]): Unit = {
val appId = client.getAttemptId().getApplicationId().toString()
val attemptId = client.getAttemptId().getAttemptId().toString()
val historyAddress = ApplicationMaster
.getHistoryServerAddress(_sparkConf, yarnConf, appId, attemptId) client.register(host, port, yarnConf, _sparkConf, uiAddress, historyAddress)
registered = true
}
ü client是private val client = doAsUser { new YarnRMClient() }
ü 注册ApplicationMaster需要调用client#register(..)方法,该方法需要传入driver host、driver port、historyAddress
ü 在client#register(…)内部是通过org.apache.hadoop.yarn.client.api.AMRMClient#registerApplicationMaster(driverHost, driverPort, trackingUrl)方法来实现向YARN ResourceManager注册ApplicationMaster的。
上述代码中client#register(…)client是YarmRMClient实例,register方式具体实现如下:
/**
* Handles registering and unregistering the application with the YARN ResourceManager.
*/
private[spark] class YarnRMClient extends Logging { private var amClient: AMRMClient[ContainerRequest] = _
private var uiHistoryAddress: String = _
private var registered: Boolean = false /**
* Registers the application master with the RM.
*
* @param driverHost Host name where driver is running.
* @param driverPort Port where driver is listening.
* @param conf The Yarn configuration.
* @param sparkConf The Spark configuration.
* @param uiAddress Address of the SparkUI.
* @param uiHistoryAddress Address of the application on the History Server.
*/
def register(
driverHost: String,
driverPort: Int,
conf: YarnConfiguration,
sparkConf: SparkConf,
uiAddress: Option[String],
uiHistoryAddress: String): Unit = {
amClient = AMRMClient.createAMRMClient()
amClient.init(conf)
amClient.start()
this.uiHistoryAddress = uiHistoryAddress val trackingUrl = uiAddress.getOrElse {
if (sparkConf.get(ALLOW_HISTORY_SERVER_TRACKING_URL)) uiHistoryAddress else ""
} logInfo("Registering the ApplicationMaster")
synchronized {
amClient.registerApplicationMaster(driverHost, driverPort, trackingUrl)
registered = true
}
}
。。。
}
运行过程:
1)需要先初始化 AMRMClient[ContainerRequest] 对象amClient并调动amClient#start()启动;
2)同步方式执行 amClient#registerApplicationMaster(driverHost, driverPort, trackingUrl) 方法,使用YarnRMClient对象向Yarn Resource Manager注册ApplicationMaster;
3)注册时,会传递一个trackingUrl,记录的是通过UI方式查看应用程序的运行状态的地址。
备注:ApplicationMaster 向 ResourceManager 注册,这样用户可以直接通过ResourceManage查看应用程序的运行状态,然后它将采用轮询的方式通过RPC协议为各个任务申请资源,并监控它们的运行状态直到运行结束。
向RM申请资源启动Container
接着向下分析ApplicationMaster#runDriver中逻辑,上边我们看到SparkContext初始化成功后返回sc对象,并将AM注册到RM,接下来:
1)根据driver host、driver port和driver rpc server名称YarnSchedulerBackend.ENDPOINT_NAME获取到driver的EndpointRef对象driverRef,方便AM与Driver通信;同时Container中Executor启动时也传递了driverRef的host、port等信息,这样Executor就可以通过driver host,dirver port获取到driverEndpointRef实现:executor与driver之间的RPC通信。
2)调用createAllocator(driverRef, userConf),使用YarnRMClient对象向RM申请Container资源,并启动Executor。
在ApplicationMaster中定义了createAllocator(driverRef, userConf)方法如下
private val client = doAsUser { new YarnRMClient() } private def createAllocator(driverRef: RpcEndpointRef, _sparkConf: SparkConf): Unit = {
val appId = client.getAttemptId().getApplicationId().toString()
val driverUrl = RpcEndpointAddress(driverRef.address.host, driverRef.address.port,
CoarseGrainedSchedulerBackend.ENDPOINT_NAME).toString // Before we initialize the allocator, let's log the information about how executors will
// be run up front, to avoid printing this out for every single executor being launched.
// Use placeholders for information that changes such as executor IDs.
logInfo {
val executorMemory = _sparkConf.get(EXECUTOR_MEMORY).toInt
val executorCores = _sparkConf.get(EXECUTOR_CORES)
val dummyRunner = new ExecutorRunnable(None, yarnConf, _sparkConf, driverUrl, "<executorId>",
"<hostname>", executorMemory, executorCores, appId, securityMgr, localResources)
dummyRunner.launchContextDebugInfo()
} allocator = client.createAllocator(
yarnConf,
_sparkConf,
driverUrl,
driverRef,
securityMgr,
localResources) credentialRenewer.foreach(_.setDriverRef(driverRef)) // Initialize the AM endpoint *after* the allocator has been initialized. This ensures
// that when the driver sends an initial executor request (e.g. after an AM restart),
// the allocator is ready to service requests.
rpcEnv.setupEndpoint("YarnAM", new AMEndpoint(rpcEnv, driverRef)) allocator.allocateResources()
val ms = MetricsSystem.createMetricsSystem("applicationMaster", sparkConf, securityMgr)
val prefix = _sparkConf.get(YARN_METRICS_NAMESPACE).getOrElse(appId)
ms.registerSource(new ApplicationMasterSource(prefix, allocator))
ms.start()
metricsSystem = Some(ms)
reporterThread = launchReporterThread()
}
上边这段代码主要通过client(YarnRMClient对象)创建的YarnAllocator对象allocator来进行container申请,通过ExecutorRunnable来启动executor,下边我们看下具体执行步骤:
1)通过yarn#createAllocator(yarnConf,_sparkConf,driverUrl,driverRef,securityMgr,localResources)创建allocator,该allocator是YarnAllocator的对象
2) 初始化AMEndpoint(它是ApplicationMaster下的一个内部类)对象,用来实现与driver之间rpc通信。
其中需要注意:AMEndpoint初始化时传入了dirverRef的,在AMEndpoint的onStart()方法中调用driver.send(RegisterClusterManager(self)),这时driver端接收该信息类是:
3)调用allocator.allocateResources()其内部实现是循环申请container,并通过ExecutorRunnable启动executor。
4)上报测量数据,allocationThreadImpl()收集错误信息并做出响应。
上边提到AMEndpoint类(它是ApplicationMaster的一个内部类),下边看下他的具体实现:
/**
* An [[RpcEndpoint]] that communicates with the driver's scheduler backend.
*/
private class AMEndpoint(override val rpcEnv: RpcEnv, driver: RpcEndpointRef)
extends RpcEndpoint with Logging { override def onStart(): Unit = {
driver.send(RegisterClusterManager(self))
} override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
case r: RequestExecutors =>
Option(allocator) match {
case Some(a) =>
if (a.requestTotalExecutorsWithPreferredLocalities(r.requestedTotal,
r.localityAwareTasks, r.hostToLocalTaskCount, r.nodeBlacklist)) {
resetAllocatorInterval()
}
context.reply(true) case None =>
logWarning("Container allocator is not ready to request executors yet.")
context.reply(false)
} case KillExecutors(executorIds) =>
logInfo(s"Driver requested to kill executor(s) ${executorIds.mkString(", ")}.")
Option(allocator) match {
case Some(a) => executorIds.foreach(a.killExecutor)
case None => logWarning("Container allocator is not ready to kill executors yet.")
}
context.reply(true) case GetExecutorLossReason(eid) =>
Option(allocator) match {
case Some(a) =>
a.enqueueGetLossReasonRequest(eid, context)
resetAllocatorInterval()
case None =>
logWarning("Container allocator is not ready to find executor loss reasons yet.")
}
} override def onDisconnected(remoteAddress: RpcAddress): Unit = {
// In cluster mode, do not rely on the disassociated event to exit
// This avoids potentially reporting incorrect exit codes if the driver fails
if (!isClusterMode) {
logInfo(s"Driver terminated or disconnected! Shutting down. $remoteAddress")
finish(FinalApplicationStatus.SUCCEEDED, ApplicationMaster.EXIT_SUCCESS)
}
}
}
需要来说说这类:
1)在onStart()时,会向driver(SparkContext实例)发送一个RegisterClusterManager(self)请求,该用意用来告知driver,ClusterManger权限交给我,其中driver接收该AM参数代码在YarnSchedulerBackend(该对象是SparkContext的schedulerBackend属性)
备注:
YarnClusterSchedulerBackend、YarnSchedulerBackend、CoarseGrainedSchedulerBackend三者之间关系:
YarnClusterSchedulerBackend extends YarnSchedulerBackend
YarnSchedulerBackend extends CoarseGrainedSchedulerBackend
2)在receiveAndReply()方法包含了三种处理:
2.1)RequestExecutors请求分配executor;
2.2)KillExecutors杀掉所有executor;
2.3)GetExecutorLossReason获取executor丢失原因。
通过ExecutorRunable启动Executor
上边讲到调用ApplicationMaster.allocator.allocateResources()其内部实现是循环申请container,并通过ExecutorRunnable启动executor。ExecutorRunnable是用来启动CoarseGrainedExecutorBackend,CoarseGrainedExecutorBackend其实是一个进程,ExecutorRunnable包装了CoarseGrainedExecutorBackend进程启动脚本,并提供了通过nmClient(NameNode Client)启动Conatiner,启动container时附带CoarseGrainedExecutorBackend进程启动脚本。
private[yarn] class ExecutorRunnable(
container: Option[Container],
conf: YarnConfiguration,
sparkConf: SparkConf,
masterAddress: String,
executorId: String,
hostname: String,
executorMemory: Int,
executorCores: Int,
appId: String,
securityMgr: SecurityManager,
localResources: Map[String, LocalResource]) extends Logging { var rpc: YarnRPC = YarnRPC.create(conf)
var nmClient: NMClient = _ def run(): Unit = {
logDebug("Starting Executor Container")
nmClient = NMClient.createNMClient()
nmClient.init(conf)
nmClient.start()
startContainer()
} def launchContextDebugInfo(): String = {
val commands = prepareCommand()
val env = prepareEnvironment() s"""
|===============================================================================
|YARN executor launch context:
| env:
|${Utils.redact(sparkConf, env.toSeq).map { case (k, v) => s" $k -> $v\n" }.mkString}
| command:
| ${commands.mkString(" \\ \n ")}
|
| resources:
|${localResources.map { case (k, v) => s" $k -> $v\n" }.mkString}
|===============================================================================""".stripMargin
} def startContainer(): java.util.Map[String, ByteBuffer] = {
val ctx = Records.newRecord(classOf[ContainerLaunchContext])
.asInstanceOf[ContainerLaunchContext]
val env = prepareEnvironment().asJava ctx.setLocalResources(localResources.asJava)
ctx.setEnvironment(env) val credentials = UserGroupInformation.getCurrentUser().getCredentials()
val dob = new DataOutputBuffer()
credentials.writeTokenStorageToStream(dob)
ctx.setTokens(ByteBuffer.wrap(dob.getData())) val commands = prepareCommand() ctx.setCommands(commands.asJava)
ctx.setApplicationACLs(
YarnSparkHadoopUtil.getApplicationAclsForYarn(securityMgr).asJava) // If external shuffle service is enabled, register with the Yarn shuffle service already
// started on the NodeManager and, if authentication is enabled, provide it with our secret
// key for fetching shuffle files later
if (sparkConf.get(SHUFFLE_SERVICE_ENABLED)) {
val secretString = securityMgr.getSecretKey()
val secretBytes =
if (secretString != null) {
// This conversion must match how the YarnShuffleService decodes our secret
JavaUtils.stringToBytes(secretString)
} else {
// Authentication is not enabled, so just provide dummy metadata
ByteBuffer.allocate(0)
}
ctx.setServiceData(Collections.singletonMap("spark_shuffle", secretBytes))
} // Send the start request to the ContainerManager
try {
nmClient.startContainer(container.get, ctx)
} catch {
case ex: Exception =>
throw new SparkException(s"Exception while starting container ${container.get.getId}" +
s" on host $hostname", ex)
}
} private def prepareCommand(): List[String] = {
// Extra options for the JVM
val javaOpts = ListBuffer[String]() // Set the JVM memory
val executorMemoryString = executorMemory + "m"
javaOpts += "-Xmx" + executorMemoryString // Set extra Java options for the executor, if defined
sparkConf.get(EXECUTOR_JAVA_OPTIONS).foreach { opts =>
val subsOpt = Utils.substituteAppNExecIds(opts, appId, executorId)
javaOpts ++= Utils.splitCommandString(subsOpt).map(YarnSparkHadoopUtil.escapeForShell)
} // Set the library path through a command prefix to append to the existing value of the
// env variable.
val prefixEnv = sparkConf.get(EXECUTOR_LIBRARY_PATH).map { libPath =>
Client.createLibraryPathPrefix(libPath, sparkConf)
} javaOpts += "-Djava.io.tmpdir=" +
new Path(Environment.PWD.$$(), YarnConfiguration.DEFAULT_CONTAINER_TEMP_DIR) // Certain configs need to be passed here because they are needed before the Executor
// registers with the Scheduler and transfers the spark configs. Since the Executor backend
// uses RPC to connect to the scheduler, the RPC settings are needed as well as the
// authentication settings.
sparkConf.getAll
.filter { case (k, v) => SparkConf.isExecutorStartupConf(k) }
.foreach { case (k, v) => javaOpts += YarnSparkHadoopUtil.escapeForShell(s"-D$k=$v") } // Commenting it out for now - so that people can refer to the properties if required. Remove
// it once cpuset version is pushed out.
// The context is, default gc for server class machines end up using all cores to do gc - hence
// if there are multiple containers in same node, spark gc effects all other containers
// performance (which can also be other spark containers)
// Instead of using this, rely on cpusets by YARN to enforce spark behaves 'properly' in
// multi-tenant environments. Not sure how default java gc behaves if it is limited to subset
// of cores on a node.
/*
else {
// If no java_opts specified, default to using -XX:+CMSIncrementalMode
// It might be possible that other modes/config is being done in
// spark.executor.extraJavaOptions, so we don't want to mess with it.
// In our expts, using (default) throughput collector has severe perf ramifications in
// multi-tenant machines
// The options are based on
// http://www.oracle.com/technetwork/java/gc-tuning-5-138395.html#0.0.0.%20When%20to%20Use
// %20the%20Concurrent%20Low%20Pause%20Collector|outline
javaOpts += "-XX:+UseConcMarkSweepGC"
javaOpts += "-XX:+CMSIncrementalMode"
javaOpts += "-XX:+CMSIncrementalPacing"
javaOpts += "-XX:CMSIncrementalDutyCycleMin=0"
javaOpts += "-XX:CMSIncrementalDutyCycle=10"
}
*/ // For log4j configuration to reference
javaOpts += ("-Dspark.yarn.app.container.log.dir=" + ApplicationConstants.LOG_DIR_EXPANSION_VAR) val userClassPath = Client.getUserClasspath(sparkConf).flatMap { uri =>
val absPath =
if (new File(uri.getPath()).isAbsolute()) {
Client.getClusterPath(sparkConf, uri.getPath())
} else {
Client.buildPath(Environment.PWD.$(), uri.getPath())
}
Seq("--user-class-path", "file:" + absPath)
}.toSeq YarnSparkHadoopUtil.addOutOfMemoryErrorArgument(javaOpts)
val commands = prefixEnv ++
Seq(Environment.JAVA_HOME.$$() + "/bin/java", "-server") ++
javaOpts ++
Seq("org.apache.spark.executor.CoarseGrainedExecutorBackend",
"--driver-url", masterAddress,
"--executor-id", executorId,
"--hostname", hostname,
"--cores", executorCores.toString,
"--app-id", appId) ++
userClassPath ++
Seq(
s"1>${ApplicationConstants.LOG_DIR_EXPANSION_VAR}/stdout",
s"2>${ApplicationConstants.LOG_DIR_EXPANSION_VAR}/stderr") // TODO: it would be nicer to just make sure there are no null commands here
commands.map(s => if (s == null) "null" else s).toList
} private def prepareEnvironment(): HashMap[String, String] = {
val env = new HashMap[String, String]()
Client.populateClasspath(null, conf, sparkConf, env, sparkConf.get(EXECUTOR_CLASS_PATH)) // lookup appropriate http scheme for container log urls
val yarnHttpPolicy = conf.get(
YarnConfiguration.YARN_HTTP_POLICY_KEY,
YarnConfiguration.YARN_HTTP_POLICY_DEFAULT
)
val httpScheme = if (yarnHttpPolicy == "HTTPS_ONLY") "https://" else "http://" System.getenv().asScala.filterKeys(_.startsWith("SPARK"))
.foreach { case (k, v) => env(k) = v } sparkConf.getExecutorEnv.foreach { case (key, value) =>
if (key == Environment.CLASSPATH.name()) {
// If the key of env variable is CLASSPATH, we assume it is a path and append it.
// This is kept for backward compatibility and consistency with hadoop
YarnSparkHadoopUtil.addPathToEnvironment(env, key, value)
} else {
// For other env variables, simply overwrite the value.
env(key) = value
}
} // Add log urls
container.foreach { c =>
sys.env.get("SPARK_USER").foreach { user =>
val containerId = ConverterUtils.toString(c.getId)
val address = c.getNodeHttpAddress
val baseUrl = s"$httpScheme$address/node/containerlogs/$containerId/$user" env("SPARK_LOG_URL_STDERR") = s"$baseUrl/stderr?start=-4096"
env("SPARK_LOG_URL_STDOUT") = s"$baseUrl/stdout?start=-4096"
}
} env
}
}
ExecutorRunable该类包含以下方法:
1)prepareEnvironment():准备executor运行环境
2)prepareCommand():生成启动CoarseGrainedExecutorBackend进程启动脚本
3)startContainer():
1)初始化executor运行环境;
2)生成启动CoarseGrainedExecutorBackend进程启动脚本
3)将生成启动CoarseGrainedExecutorBackend进程启动脚本附加到container中,并调用nmClient.startContainer(container.get, ctx)实现container启动,在container中运行启动CoarseGrainedExecutorBackend进程启动脚本来启动executor。
4)launchContextDebugInfo():打印测试日志
5)run(): 通过NMClient.createNMClient()初始化nmClient ,并启动nmClient ,并调用startContainer()。
启动CoarseGrainedExecutorBackend进程脚本示例:
/data3/yarn/nm/usercache/dx/appcache/application_1559203334026_0010/container_1559203334026_0010_01_000003/launch_container.sh
launch_container.sh内容
#!/bin/bash
。。。
exec /bin/bash -c "$JAVA_HOME/bin/java
-server -Xmx6144m
-Djava.io.tmpdir=$PWD/tmp
'-Dspark.driver.port=50365'
'-Dspark.network.timeout=10000000'
'-Dspark.port.maxRetries=32'
-Dspark.yarn.app.container.log.dir=/data4/yarn/container-logs/application_1559203334026_0010/container_1559203334026_0010_01_000003
-XX:OnOutOfMemoryError='kill %p'
org.apache.spark.executor.CoarseGrainedExecutorBackend
--driver-url spark://CoarseGrainedScheduler@CDH-143:50365
--executor-id
--hostname CDH-
--cores
--app-id application_1559203334026_0010
--user-class-path file:$PWD/__app__.jar
--user-class-path file:$PWD/spark-sql-kafka--10_2.-2.4..jar
--user-class-path file:$PWD/spark-avro_2.-3.2..jar
--user-class-path file:$PWD/bijection-core_2.-0.9..jar
--user-class-path file:$PWD/bijection-avro_2.-0.9..jar
>/data4/yarn/container-logs/application_1559203334026_0010/container_1559203334026_0010_01_000003/stdout
>/data4/yarn/container-logs/application_1559203334026_0010/container_1559203334026_0010_01_000003/stderr"
。。。。
CoarseGrainedExecutorBackend启动
CoarseGrainedExecutorBackend入口函数
和SparkSubmit半生对象、AppllicationMaster半生对象一样,CoarseGrainedExecutorBackend也包含一个半生对象,同样也包含了入口main函数。该main函数执行:
def main(args: Array[String]) {
var driverUrl: String = null
var executorId: String = null
var hostname: String = null
var cores: Int = 0
var appId: String = null
var workerUrl: Option[String] = None
val userClassPath = new mutable.ListBuffer[URL]() var argv = args.toList
while (!argv.isEmpty) {
argv match {
case ("--driver-url") :: value :: tail =>
driverUrl = value
argv = tail
case ("--executor-id") :: value :: tail =>
executorId = value
argv = tail
case ("--hostname") :: value :: tail =>
hostname = value
argv = tail
case ("--cores") :: value :: tail =>
cores = value.toInt
argv = tail
case ("--app-id") :: value :: tail =>
appId = value
argv = tail
case ("--worker-url") :: value :: tail =>
// Worker url is used in spark standalone mode to enforce fate-sharing with worker
workerUrl = Some(value)
argv = tail
case ("--user-class-path") :: value :: tail =>
userClassPath += new URL(value)
argv = tail
case Nil =>
case tail =>
// scalastyle:off println
System.err.println(s"Unrecognized options: ${tail.mkString(" ")}")
// scalastyle:on println
printUsageAndExit()
}
} if (driverUrl == null || executorId == null || hostname == null || cores <= 0 ||
appId == null) {
printUsageAndExit()
} run(driverUrl, executorId, hostname, cores, appId, workerUrl, userClassPath)
System.exit(0)
}
1) 解析ExecutorRunnable传入的参数;
a) var driverUrl: String = null ---driver的Rpc通信Url
b) var executorId: String = null ---executor的编号id(一般driver所在executor编号为0,其他一次加1,连续的)
c) var hostname: String = null --- executor运行的集群节点的hostname
d) var cores: Int = 0 ---executor可使用vcore个数
e) var appId: String = null ---当前应用程序的id
f) var workerUrl: Option[String] = None ---worker UI地址
g) val userClassPath = new mutable.ListBuffer[URL]() ---用户代码(当前应用程序)main所在的包和依赖包的路径列表。
2) 将解析后的参数传入run方法,执行CoarseGrainedExecutorBackend半生对象的run方法。
private def run(
driverUrl: String,
executorId: String,
hostname: String,
cores: Int,
appId: String,
workerUrl: Option[String],
userClassPath: Seq[URL]) { Utils.initDaemon(log) SparkHadoopUtil.get.runAsSparkUser { () =>
// Debug code
Utils.checkHost(hostname) // Bootstrap to fetch the driver's Spark properties.
val executorConf = new SparkConf
val fetcher = RpcEnv.create(
"driverPropsFetcher",
hostname,
-1,
executorConf,
new SecurityManager(executorConf),
clientMode = true)
val driver = fetcher.setupEndpointRefByURI(driverUrl)
val cfg = driver.askSync[SparkAppConfig](RetrieveSparkAppConfig)
val props = cfg.sparkProperties ++ Seq[(String, String)](("spark.app.id", appId))
fetcher.shutdown() // Create SparkEnv using properties we fetched from the driver.
val driverConf = new SparkConf()
for ((key, value) <- props) {
// this is required for SSL in standalone mode
if (SparkConf.isExecutorStartupConf(key)) {
driverConf.setIfMissing(key, value)
} else {
driverConf.set(key, value)
}
} cfg.hadoopDelegationCreds.foreach { tokens =>
SparkHadoopUtil.get.addDelegationTokens(tokens, driverConf)
} val env = SparkEnv.createExecutorEnv(
driverConf, executorId, hostname, cores, cfg.ioEncryptionKey, isLocal = false) env.rpcEnv.setupEndpoint("Executor", new CoarseGrainedExecutorBackend(
env.rpcEnv, driverUrl, executorId, hostname, cores, userClassPath, env))
workerUrl.foreach { url =>
env.rpcEnv.setupEndpoint("WorkerWatcher", new WorkerWatcher(env.rpcEnv, url))
}
env.rpcEnv.awaitTermination()
}
}
代码执行逻辑:
1)通过driverUrl与driver Endpoint建立通信,向driver需求Spark应用程序的配置信息,并来创建driverConf对象。RetrieveSparkAppConfig类型请求被driver的schedulerBackend属性接收,接收代码位置:https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/scheduler/cluster/CoarseGrainedSchedulerBackend.scala
2)通过SparkEnv.createExecutorEnv() 方法创建SparkEnv对象env ,SparkEnv#createExecutorEnv 内部会创建以下几类组件:RpcEnv,securityManager,broadcastManager,mapOutputTracker,shuffleManager,memoryManager,blockTransferService,blockManagerMaster,blockManager,metricsSystem,outputCommitCorrdinator,outputCommitCoordinatorRef等。
3)通过env.rpcEnv对象开放RPC通信接口“Executor”,对应RpcEndpoint类型是CoarseGrainedExecutorBackend类。
4)通过workerUrl开发RPC通信接口“WorkerWatcher”,用来监控worker运行。WorkerWatcher的功能:连接到工作进程并在连接断开时终止JVM的端点;提供工作进程及其关联子进程之间的命运共享。
5)调用env.rpcEnv.awaitTermination()来阻塞程序,直到程序退出。
CoarseGrainedExecutorBackend类
从该类的定义上可以看出它是一个RpcEndpoint,因此它是实现RPC通信数据处理功能类。
private[spark] class CoarseGrainedExecutorBackend(
override val rpcEnv: RpcEnv,
driverUrl: String,
executorId: String,
hostname: String,
cores: Int,
userClassPath: Seq[URL],
env: SparkEnv)
extends ThreadSafeRpcEndpoint with ExecutorBackend with Logging { private[this] val stopping = new AtomicBoolean(false)
var executor: Executor = null
@volatile var driver: Option[RpcEndpointRef] = None // If this CoarseGrainedExecutorBackend is changed to support multiple threads, then this may need
// to be changed so that we don't share the serializer instance across threads
private[this] val ser: SerializerInstance = env.closureSerializer.newInstance() override def onStart() {
logInfo("Connecting to driver: " + driverUrl)
rpcEnv.asyncSetupEndpointRefByURI(driverUrl).flatMap { ref =>
// This is a very fast action so we can use "ThreadUtils.sameThread"
driver = Some(ref)
ref.ask[Boolean](RegisterExecutor(executorId, self, hostname, cores, extractLogUrls))
}(ThreadUtils.sameThread).onComplete {
// This is a very fast action so we can use "ThreadUtils.sameThread"
case Success(msg) =>
// Always receive `true`. Just ignore it
case Failure(e) =>
exitExecutor(1, s"Cannot register with driver: $driverUrl", e, notifyDriver = false)
}(ThreadUtils.sameThread)
} def extractLogUrls: Map[String, String] = {
val prefix = "SPARK_LOG_URL_"
sys.env.filterKeys(_.startsWith(prefix))
.map(e => (e._1.substring(prefix.length).toLowerCase(Locale.ROOT), e._2))
} override def receive: PartialFunction[Any, Unit] = {
case RegisteredExecutor =>
logInfo("Successfully registered with driver")
try {
executor = new Executor(executorId, hostname, env, userClassPath, isLocal = false)
} catch {
case NonFatal(e) =>
exitExecutor(1, "Unable to create executor due to " + e.getMessage, e)
} case RegisterExecutorFailed(message) =>
exitExecutor(1, "Slave registration failed: " + message) case LaunchTask(data) =>
if (executor == null) {
exitExecutor(1, "Received LaunchTask command but executor was null")
} else {
val taskDesc = TaskDescription.decode(data.value)
logInfo("Got assigned task " + taskDesc.taskId)
executor.launchTask(this, taskDesc)
} case KillTask(taskId, _, interruptThread, reason) =>
if (executor == null) {
exitExecutor(1, "Received KillTask command but executor was null")
} else {
executor.killTask(taskId, interruptThread, reason)
} case StopExecutor =>
stopping.set(true)
logInfo("Driver commanded a shutdown")
// Cannot shutdown here because an ack may need to be sent back to the caller. So send
// a message to self to actually do the shutdown.
self.send(Shutdown) case Shutdown =>
stopping.set(true)
new Thread("CoarseGrainedExecutorBackend-stop-executor") {
override def run(): Unit = {
// executor.stop() will call `SparkEnv.stop()` which waits until RpcEnv stops totally.
// However, if `executor.stop()` runs in some thread of RpcEnv, RpcEnv won't be able to
// stop until `executor.stop()` returns, which becomes a dead-lock (See SPARK-14180).
// Therefore, we put this line in a new thread.
executor.stop()
}
}.start() case UpdateDelegationTokens(tokenBytes) =>
logInfo(s"Received tokens of ${tokenBytes.length} bytes")
SparkHadoopUtil.get.addDelegationTokens(tokenBytes, env.conf)
} override def onDisconnected(remoteAddress: RpcAddress): Unit = {
if (stopping.get()) {
logInfo(s"Driver from $remoteAddress disconnected during shutdown")
} else if (driver.exists(_.address == remoteAddress)) {
exitExecutor(1, s"Driver $remoteAddress disassociated! Shutting down.", null,
notifyDriver = false)
} else {
logWarning(s"An unknown ($remoteAddress) driver disconnected.")
}
} override def statusUpdate(taskId: Long, state: TaskState, data: ByteBuffer) {
val msg = StatusUpdate(executorId, taskId, state, data)
driver match {
case Some(driverRef) => driverRef.send(msg)
case None => logWarning(s"Drop $msg because has not yet connected to driver")
}
} /**
* This function can be overloaded by other child classes to handle
* executor exits differently. For e.g. when an executor goes down,
* back-end may not want to take the parent process down.
*/
protected def exitExecutor(code: Int,
reason: String,
throwable: Throwable = null,
notifyDriver: Boolean = true) = {
val message = "Executor self-exiting due to : " + reason
if (throwable != null) {
logError(message, throwable)
} else {
logError(message)
} if (notifyDriver && driver.nonEmpty) {
driver.get.send(RemoveExecutor(executorId, new ExecutorLossReason(reason)))
} System.exit(code)
}
}
包含的属性包含4个:
ü stopping ---标记executor运行状态
ü executor ---存储当前CoarseGrainedExecutorBackend进程中存储的Executor对象。
ü driver---存储与driver交互使用的RpcEndpointRef对象
ü ser---当前序列化使用的序列化工具
包含的方法解释:
ü onStart():重写RpcEndpoint的onStart()方法,在该方法rpcEnv.asyncSetupEndpointRefByURI(driverUrl)根据driverUrl异步的方式获取driverEndpointRef并赋值给drvier属性,并发送RegisterExecutor(executorId, self, hostname, cores, extractLogUrls)到driver(schedulerBackend)。
在当前提交模式(yarn-cluster)下,实际driver处理该信息的类是CoarseGrainedSchedulerBackend,driver接收到该信息后会调用CoarseGrainedSchedulerBackend#driverEndpoint#receiveAndReply(context: RpcCallContext)做出响应,receiveAndReply方法内部拿到了executorRef,并使用它发送信息executorRef.send(RegisteredExecutor)给executor(CoarseGrainedExecutorBackend的receive方法将接收到并处理)
ü receive():重写RpcEndpoint的onStart()方法,接收以下消息并处理:
n RegisteredExecutor 接收到driver端已经注册了executor(注册时driver保留executorId,executorAddress等信息),此时才在executor端调用executor = new Executor(executorId, hostname, env, userClassPath, isLocal = false)进行executor启动,executor主要负责执行task,上报task执行状态,进度,资源占用情况等。
n RegisterExecutorFailed(message) 注册executor失败
n LaunchTask(data) 加载任务,通过executor去执行 executor.launchTask(this, taskDesc)
n KillTask(taskId, _, interruptThread, reason) 杀掉task任务
n StopExecutor 停止executor
n Shutdown 关闭executor
n UpdateDelegationTokens(tokenBytes) 更新代理token
上边这些参数类型定义在CoarseGrainedClusterMessages中,这些接收到的消息发送者是driver端SparkContext下的schedulerBackend(CoarseGrainedSchedulerBackend)。
ü onDisconnected(remoteAddress: RpcAddress) :重写RpcEndpoint的onDisconnected()方法
ü statusUpdate(taskId: Long, state: TaskState, data: ByteBuffer):重写RpcEndpoint的statusUpdate()方法
ü exitExecutor(code: Int, reason: String, throwable: Throwable = null, notifyDriver: Boolean = true)
driver端RpcEndpoint初始化过程
CoarseGrainedExecutorBackend在它重写RpcEndpoint的onStart()方法中,通过driverUrl获取到了driver的RpcEndpointRef,并给driver发送了请求:
ref.ask[Boolean](RegisterExecutor(executorId, self, hostname, cores, extractLogUrls))
实际上这个接收对象是CoarseGrainedSchedulerBackend,对应的发送类型定义在CoarseGrainedClusterMessages中。
下面看下CoarseGrainedExecutorBackend引用的这个driver端schedulerBackend(CoarseGrainedSchedulerBackend)初始化过程具体过程。
初始化schedulerBackend和taskScheduler
在SparkContext初始化过程中,会初始化schedulerBackend和taskScheduler
private var _schedulerBackend: SchedulerBackend = _
private var _taskScheduler: TaskScheduler = _ private[spark] def schedulerBackend: SchedulerBackend = _schedulerBackend private[spark] def taskScheduler: TaskScheduler = _taskScheduler
private[spark] def taskScheduler_=(ts: TaskScheduler): Unit = {
_taskScheduler = ts
} // 构造函数中初始化赋值
// Create and start the scheduler
val (sched, ts) = SparkContext.createTaskScheduler(this, master, deployMode)
_schedulerBackend = sched
_taskScheduler = ts
初始化schedulerBackend和taskScheduler实现类YarnClusterManager
SparkContext中最终初始化schedulerBackend和taskScheduler的类是YarnClusterManager
/**
* Cluster Manager for creation of Yarn scheduler and backend
*/
private[spark] class YarnClusterManager extends ExternalClusterManager { override def canCreate(masterURL: String): Boolean = {
masterURL == "yarn"
} override def createTaskScheduler(sc: SparkContext, masterURL: String): TaskScheduler = {
sc.deployMode match {
case "cluster" => new YarnClusterScheduler(sc)
case "client" => new YarnScheduler(sc)
case _ => throw new SparkException(s"Unknown deploy mode '${sc.deployMode}' for Yarn")
}
} override def createSchedulerBackend(sc: SparkContext,
masterURL: String,
scheduler: TaskScheduler): SchedulerBackend = {
sc.deployMode match {
case "cluster" =>
new YarnClusterSchedulerBackend(scheduler.asInstanceOf[TaskSchedulerImpl], sc)
case "client" =>
new YarnClientSchedulerBackend(scheduler.asInstanceOf[TaskSchedulerImpl], sc)
case _ =>
throw new SparkException(s"Unknown deploy mode '${sc.deployMode}' for Yarn")
}
} override def initialize(scheduler: TaskScheduler, backend: SchedulerBackend): Unit = {
scheduler.asInstanceOf[TaskSchedulerImpl].initialize(backend)
}
}
YarnClusterManager#createTaskScheduler(...):在该方法中会根据SparkContext对象的deployMode属性来进行分支判断:
1)client时,返回YarnScheduler(https://github.com/apache/spark/blob/branch-2.4/resource-managers/yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnScheduler.scala)实例对象;
2)cluster时,返回YarnClusterScheduler(https://github.com/apache/spark/blob/branch-2.4/resource-managers/yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnClusterScheduler.scala)实例对象。
YarnClusterManager#createSchedulerBackend(...):在该方法中会根据SparkContext对象的deployMode属性来进行分支判断:
1)client时,返回YarnClientSchedulerBackend(https://github.com/apache/spark/blob/branch-2.4/resource-managers/yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientSchedulerBackend.scala)实例对象;
2)cluster时,返回YarnClusterSchedulerBackend(https://github.com/apache/spark/blob/branch-2.4/resource-managers/yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnClusterSchedulerBackend.scala)实例对象。