I need to somehow make numpy load in both text and numbers.
我需要以某种方式在文本和数字中加载numpy负载。
I am getting this error:
我得到了这个错误:
Traceback (most recent call last):
File "ip00ktest.py", line 13, in <module>
File = np.loadtxt(str(z[1])) #load spectrum file
File "/usr/lib64/python2.6/site-packages/numpy/lib/npyio.py", line 805, in loadtxt
items = [conv(val) for (conv, val) in zip(converters, vals)]
ValueError: invalid literal for float(): EFF
because my file I'm loading in has text in it. I need each word to be stored in an array index as well as the data below it. How do I do that?
因为我加载的文件中有文本。我需要每个单词都存储在数组索引中,以及下面的数据。我该怎么做呢?
Edit: Sorry for not giving an example. Here is what my file looks like.
编辑:很抱歉没有给出一个例子。这是我的文件。
FF 3500. GRAVITY 0.00000 SDSC GRID [+0.0] VTURB 2.0 KM/S L/H 1.25
wl(nm) Inu(ergs/cm**2/s/hz/ster) for 17 mu in 1221 frequency intervals
1.000 .900 .800 .700 .600 .500 .400 .300 .250 .200 .150 .125 .100 .075 .050 .025 .010
9.09 0.000E+00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9.35 0.000E+00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9.61 0.000E+00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9.77 0.000E+00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9.96 0.000E+00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
There are thousands of numbers below the ones shown here. Also, there are different datasets within the file such that the header you see on top repeats, followed by a new set of new numbers.
这里有成千上万的数字。此外,文件中还有不同的数据集,例如您在顶部看到的头重复出现,然后是一组新的数字。
Code that Fails:
失败的代码:
import sys
import numpy as np
from math import *
print 'Number of arguments:', len(sys.argv), 'arguments.'
print 'Argument List:', str(sys.argv)
z = np.array(sys.argv) #store all of the file names into array
i = len(sys.argv) #the length of the filenames array
File = np.loadtxt(str(z[1])) #load spectrum file
2 个解决方案
#1
3
If the line that messes it up always begins with EFF
, then you can ignore that line quite easily:
如果把它弄糟的那行总是以EFF开头,那么你可以很容易地忽略这行:
np.loadtxt(str(z[1]), comments='EFF')
Which will treat any line beginning with 'EFF'
as a comment and it will be ignored.
它将把任何以“EFF”开头的行作为注释,并将被忽略。
#2
1
To read the numbers, use the skiprows
parameter of numpy.loadtxt
to skip the header. Write custom code to read the header, because it seems to have an irregular format.
要读取数字,请使用numpy的skiprows参数。loadtxt来跳过标题。编写自定义代码来读取标题,因为它似乎有不规则的格式。
NumPy is most useful with homogenous numerical data -- don't try to put the strings in there.
NumPy最适用于相同的数值数据——不要尝试将字符串放入其中。
#1
3
If the line that messes it up always begins with EFF
, then you can ignore that line quite easily:
如果把它弄糟的那行总是以EFF开头,那么你可以很容易地忽略这行:
np.loadtxt(str(z[1]), comments='EFF')
Which will treat any line beginning with 'EFF'
as a comment and it will be ignored.
它将把任何以“EFF”开头的行作为注释,并将被忽略。
#2
1
To read the numbers, use the skiprows
parameter of numpy.loadtxt
to skip the header. Write custom code to read the header, because it seems to have an irregular format.
要读取数字,请使用numpy的skiprows参数。loadtxt来跳过标题。编写自定义代码来读取标题,因为它似乎有不规则的格式。
NumPy is most useful with homogenous numerical data -- don't try to put the strings in there.
NumPy最适用于相同的数值数据——不要尝试将字符串放入其中。