I have a list of Pandas dataframes that I would like to combine into one Pandas dataframe. I am using Python 2.7.10 and Pandas 0.16.2
我有一个Pandas数据帧列表,我想将它组合成一个Pandas数据帧。我使用的是Python 2.7.10和Pandas 0.16.2
I created the list of dataframes from:
我从以下位置创建了数据框列表:
import pandas as pd
dfs = []
sqlall = "select * from mytable"
for chunk in pd.read_sql_query(sqlall , cnxn, chunksize=10000):
dfs.append(chunk)
This returns a list of dataframes
这将返回数据帧列表
type(dfs[0])
Out[6]: pandas.core.frame.DataFrame
type(dfs)
Out[7]: list
len(dfs)
Out[8]: 408
Here is some sample data
这是一些示例数据
# sample dataframes
d1 = pd.DataFrame({'one' : [1., 2., 3., 4.], 'two' : [4., 3., 2., 1.]})
d2 = pd.DataFrame({'one' : [5., 6., 7., 8.], 'two' : [9., 10., 11., 12.]})
d3 = pd.DataFrame({'one' : [15., 16., 17., 18.], 'two' : [19., 10., 11., 12.]})
# list of dataframes
mydfs = [d1, d2, d3]
I would like to combine d1
, d2
, and d3
into one pandas dataframe. Alternatively, a method of reading a large-ish table directly into a dataframe when using the chunksize
option would be very helpful.
我想将d1,d2和d3组合成一个pandas数据帧。或者,在使用chunksize选项时,将大型表直接读入数据帧的方法将非常有用。
3 个解决方案
#1
84
Given that all the dataframes have the same columns, you can simply concat
them:
鉴于所有数据帧都具有相同的列,您可以简单地连接它们:
import pandas as pd
df = pd.concat(list_of_dataframes)
#2
4
If the dataframes DO NOT all have the same columns try the following:
如果数据帧不是都具有相同的列,请尝试以下操作:
df = pd.DataFrame.from_dict(map(dict,df_list))
#3
0
You also can do it with functional programming:
您也可以使用函数式编程来完成它:
reduce(lambda df1, df2: df1.merge(df2, "outer"), mydfs)
#1
84
Given that all the dataframes have the same columns, you can simply concat
them:
鉴于所有数据帧都具有相同的列,您可以简单地连接它们:
import pandas as pd
df = pd.concat(list_of_dataframes)
#2
4
If the dataframes DO NOT all have the same columns try the following:
如果数据帧不是都具有相同的列,请尝试以下操作:
df = pd.DataFrame.from_dict(map(dict,df_list))
#3
0
You also can do it with functional programming:
您也可以使用函数式编程来完成它:
reduce(lambda df1, df2: df1.merge(df2, "outer"), mydfs)