I have a pandas dataframe with a column named 'City, State, Country'. I want to separate this column into three new columns, 'City, 'State' and 'Country'.
我有一个pandas数据框,其中包含一个名为“City,State,Country”的列。我想将这个专栏分为三个新专栏:'City,'State'和'Country'。
0 HUN
1 ESP
2 GBR
3 ESP
4 FRA
5 ID, USA
6 GA, USA
7 Hoboken, NJ, USA
8 NJ, USA
9 AUS
Splitting the column into three columns is trivial enough:
将列拆分为三列非常简单:
location_df = df['City, State, Country'].apply(lambda x: pd.Series(x.split(',')))
However, this creates left-aligned data:
但是,这会创建左对齐数据:
0 1 2
0 HUN NaN NaN
1 ESP NaN NaN
2 GBR NaN NaN
3 ESP NaN NaN
4 FRA NaN NaN
5 ID USA NaN
6 GA USA NaN
7 Hoboken NJ USA
8 NJ USA NaN
9 AUS NaN NaN
How would one go about creating the new columns with the data right-aligned? Would I need to iterate through every row, count the number of commas and handle the contents individually?
如何在数据右对齐的情况下创建新列?我是否需要遍历每一行,计算逗号的数量并单独处理内容?
2 个解决方案
#1
45
I'd do something like the following:
我会做类似以下的事情:
foo = lambda x: pd.Series([i for i in reversed(x.split(','))])
rev = df['City, State, Country'].apply(foo)
print rev
0 1 2
0 HUN NaN NaN
1 ESP NaN NaN
2 GBR NaN NaN
3 ESP NaN NaN
4 FRA NaN NaN
5 USA ID NaN
6 USA GA NaN
7 USA NJ Hoboken
8 USA NJ NaN
9 AUS NaN NaN
I think that gets you what you want but if you also want to pretty things up and get a City, State, Country column order, you could add the following:
我认为这样可以获得你想要的东西,但是如果你想要了解更多内容并获得City,State,Country列顺序,你可以添加以下内容:
rev.rename(columns={0:'Country',1:'State',2:'City'},inplace=True)
rev = rev[['City','State','Country']]
print rev
City State Country
0 NaN NaN HUN
1 NaN NaN ESP
2 NaN NaN GBR
3 NaN NaN ESP
4 NaN NaN FRA
5 NaN ID USA
6 NaN GA USA
7 Hoboken NJ USA
8 NaN NJ USA
9 NaN NaN AUS
#2
7
Since you are dealing with strings I would suggest the amendment to your current code i.e.
由于您正在处理字符串,我建议修改您当前的代码,即
location_df = df[['City, State, Country']].apply(lambda x: pd.Series(str(x).split(',')))
I got mine to work by testing one of the columns but give this one a try.
我通过测试其中一个列让我的工作,但试试这个。
#1
45
I'd do something like the following:
我会做类似以下的事情:
foo = lambda x: pd.Series([i for i in reversed(x.split(','))])
rev = df['City, State, Country'].apply(foo)
print rev
0 1 2
0 HUN NaN NaN
1 ESP NaN NaN
2 GBR NaN NaN
3 ESP NaN NaN
4 FRA NaN NaN
5 USA ID NaN
6 USA GA NaN
7 USA NJ Hoboken
8 USA NJ NaN
9 AUS NaN NaN
I think that gets you what you want but if you also want to pretty things up and get a City, State, Country column order, you could add the following:
我认为这样可以获得你想要的东西,但是如果你想要了解更多内容并获得City,State,Country列顺序,你可以添加以下内容:
rev.rename(columns={0:'Country',1:'State',2:'City'},inplace=True)
rev = rev[['City','State','Country']]
print rev
City State Country
0 NaN NaN HUN
1 NaN NaN ESP
2 NaN NaN GBR
3 NaN NaN ESP
4 NaN NaN FRA
5 NaN ID USA
6 NaN GA USA
7 Hoboken NJ USA
8 NaN NJ USA
9 NaN NaN AUS
#2
7
Since you are dealing with strings I would suggest the amendment to your current code i.e.
由于您正在处理字符串,我建议修改您当前的代码,即
location_df = df[['City, State, Country']].apply(lambda x: pd.Series(str(x).split(',')))
I got mine to work by testing one of the columns but give this one a try.
我通过测试其中一个列让我的工作,但试试这个。