poj2826An Easy Problem?!

时间:2022-01-26 21:35:35

链接

繁琐细节题。

1、线段无交点时,ans=0;

2、如图 假设过p3.y的水平线与p1p2相交

poj2826An Easy Problem?!

因为雨是垂直下落的,左图的情况是无法收集到雨水的,而这种情况有一种简便的判定方式 cross(p1-p2,p3-p4)与cross((p1+(0,1))-p1,p1,p3)同号

对于右边的,阴影部分即为ans,求出水平交点tp,p1p2与p3p4的交点pp,ans = fabs(cross(tp-pp,p3-pp))/2;

 #include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stdlib.h>
#include<vector>
#include<cmath>
#include<queue>
#include<set>
using namespace std;
#define N 100000
#define LL long long
#define INF 0xfffffff
const double eps = 1e-;
const double pi = acos(-1.0);
const double inf = ~0u>>;
struct point
{
double x,y;
point(double x=,double y=):x(x),y(y) {}
} p[];
typedef point pointt;
pointt operator -(point a,point b)
{
return pointt(a.x-b.x,a.y-b.y);
}
int dcmp(double x)
{
if(fabs(x)<eps) return ;
return x<?-:;
}
double cross(point a,point b)
{
return a.x*b.y-a.y*b.x;
}
bool cmp(point a,point b)
{
return a.y>b.y;
} bool intersection1(point p1, point p2, point p3, point p4, point& p) // 直线相交
{
double a1, b1, c1, a2, b2, c2, d;
a1 = p1.y - p2.y;
b1 = p2.x - p1.x;
c1 = p1.x*p2.y - p2.x*p1.y;
a2 = p3.y - p4.y;
b2 = p4.x - p3.x;
c2 = p3.x*p4.y - p4.x*p3.y;
d = a1*b2 - a2*b1;
if (!dcmp(d)) return false;
p.x = (-c1*b2 + c2*b1) / d;
p.y = (-a1*c2 + a2*c1) / d;
return true;
}
double solve(point p1,point p2,point p3,point p4,point pp,point tp)
{
double ans;
point p11 = point(p1.x,p1.y+);
if(dcmp(cross(p11-p1,p1-p3))==)
{
ans = ;
//cout<<",";
}
else
{
if(dcmp(cross(p11-p1,p1-p3))*dcmp(cross(p1-p2,p3-p4))<)
{
ans = fabs(cross(p3-pp,tp-pp))/;
//cout<<",";
}
else ans = ;
}
return ans;
}
int on_segment( point p1,point p2 ,point p )
{
double max=p1.x > p2.x ? p1.x : p2.x ;
double min =p1.x < p2.x ? p1.x : p2.x ;
double max1=p1.y > p2.y ? p1.y : p2.y ;
double min1=p1.y < p2.y ? p1.y : p2.y ;
if( p.x >=min && p.x <=max &&
p.y >=min1 && p.y <=max1 )
return ;
else
return ;
}
int main()
{
int t,i;
cin>>t;
while(t--)
{
for(i = ; i <= ; i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
sort(p+,p+,cmp);
sort(p+,p+,cmp);
point pp;
if(intersection1(p[],p[],p[],p[],pp))
{
if(!on_segment(p[],p[],pp)||!on_segment(p[],p[],pp))
{
puts("0.00");
continue;
}
}
//cout<<pp.x<<" "<<pp.y<<endl;
double ans;
point p1 = point(p[].x-,p[].y),p2;
point p3 = point(p[].x-,p[].y);
if(intersection1(p[],p[],p[],p1,p2)&&on_segment(p[],p[],p2))
{ ans = solve(p[],p[],p[],p[],pp,p2);
}
else
{
intersection1(p[],p[],p[],p3,p2);
// cout<<p2.x<<" "<<p2.y<<endl;
ans = solve(p[],p[],p[],p[],pp,p2);
}
printf("%.2f\n",ans+eps); }
return ;
}