推荐博客 :https://blog.csdn.net/qq_25576697/article/details/81138213
链接:https://www.nowcoder.com/acm/contest/139/A
来源:牛客网
题目描述
Count the number of n x m matrices A satisfying the following condition modulo (109+7).
* Ai, j ∈ {0, 1, 2} for all 1 ≤ i ≤ n, 1 ≤ j ≤ m.
* Ai, j ≤ Ai + 1, j for all 1 ≤ i < n, 1 ≤ j ≤ m.
* Ai, j ≤ Ai, j + 1 for all 1 ≤ i ≤ n, 1 ≤ j < m.
输入描述:
The input consists of several test cases and is terminated by end-of-file.
Each test case contains two integers n and m.
输出描述:
For each test case, print an integer which denotes the result.
示例1
输入
1 2
2 2
1000 1000
输出
6
20
540949876
备注:
* 1 ≤ n, m ≤ 103
* The number of test cases does not exceed 105.
题意 : 格点上的数字只能是 0,1,2 ,求在符合题意的前提下的路径数量
思路分析 : 将一对点向右下平移,得到两对新的点
作者:zzuzxy
链接:https://www.nowcoder.com/discuss/87452?type=101&order=0&pos=4&page=1
来源:牛客网
LGV 算法 (Lindström–Gessel–Viennot lemma)
求以上矩阵的行列式,其中 e(a,b) 是从a到b的方法数,带入求行列式即可得到(a1,a2,...an) 到 (b1,b2,...bn) 的所有不相交路径的种数
思路
考虑01和12的分界线
是(n, 0)到(0,m)的两条不相交(可重合)路径
分界线以及分界线以上的点是一种,分界线下是一种
平移其中一条变成(n-1, -1)到(-1,m-1);
变成
代码示例 :
using namespace std;
#define ll long long
const ll maxn = 1e6+5;
const ll mod = 1e9+7;
const double eps = 1e-9;
const double pi = acos(-1.0);
const ll inf = 0x3f3f3f3f; ll n, m;
ll pp[2005]; ll qw(ll x, ll cnt){
ll res = 1; while(cnt) {
if(cnt&1) res *= x;
res %= mod;
x = x*x;
x %= mod;
cnt >>= 1;
}
return res;
} void init(){
pp[0] = 1;
for(ll i = 1; i <= 2000; i++) {
pp[i] = pp[i-1]*i;
pp[i] %= mod;
}
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
init(); while(~scanf("%lld%lld", &n, &m)){
ll a1 = (pp[n+m]*qw(pp[n], mod-2)%mod)*qw(pp[m], mod-2)%mod;
ll a2 = (pp[n+m]*qw(pp[n+1], mod-2)%mod)*qw(pp[n-1], mod-2)%mod;
ll a3 = (pp[n+m]*qw(pp[m-1], mod-2)%mod)*qw(pp[m+1], mod-2)%mod; ll ans = a1*a1-a2*a3;
printf("%lld\n", (ans%mod+mod)%mod);
}
return 0;
}