I have a NumPy array of values. I want to count how many of these values are in a specific range say x<100 and x>25. I have read about the counter, but it seems to only be valid for specif values not ranges of values. I have searched, but have not found anything regarding my specific problem. If someone could point me towards the proper documentation I would appreciate it. Thank you
我有一个NumPy值数组。我要计算有多少个值在一个特定的范围内比如x<100 x>25。我读过关于计数器的内容,但它似乎只对特定值有效,而不是值的范围。我找过了,但是没有找到任何关于我的具体问题。如果有人能给我指出正确的文件,我会很感激的。谢谢你!
I have tried this
我试了
X = array(X)
for X in range(25, 100):
print(X)
But it just gives me the numbers in between 25 and 99.
但它只给出25到99之间的数字。
EDIT The data I am using was created by another program. I then used a script to read the data and store it as a list. I then took the list and turned it in to an array using array(r).
编辑我正在使用的数据是由另一个程序创建的。然后我使用一个脚本读取数据并将其存储为一个列表。然后,我拿起列表,用数组(r)将它转换为数组。
Edit
编辑
The result of running
运行的结果
>>> a[0:10]
array(['29.63827346', '40.61488812', '25.48300065', '26.22910525',
'42.41172923', '20.15013315', '34.95323355', '13.03604098',
'29.71097606', '9.53222141'],
dtype='<U11')
5 个解决方案
#1
54
If your array is called a
, the number of elements fulfilling 25 < x < 100
is
如果数组被称为a,则满足25 < x < 100的元素的数量为
((25 < a) & (a < 100)).sum()
The expression (25 < a) & (a < 100)
results in a Boolean array with the same shape as a
with the value True
for all elements that satisfy the condition. Summing over this Boolean array treats True
values as 1
and False
values as 0
.
表达式(25 < a)和(a < 100)生成一个与a具有相同形状的布尔数组,所有满足条件的元素的值都为True。对这个布尔数组求和后,真值为1,假值为0。
#2
8
You could use histogram
. Here's a basic usage example:
你可以用直方图。这里有一个基本的用法示例:
>>> import numpy
>>> a = numpy.random.random(size=100) * 100
>>> numpy.histogram(a, bins=(0.0, 7.3, 22.4, 55.5, 77, 79, 98, 100))
(array([ 8, 14, 34, 31, 0, 12, 1]),
array([ 0. , 7.3, 22.4, 55.5, 77. , 79. , 98. , 100. ]))
In your particular case, it would look something like this:
在你的例子中,它看起来是这样的:
>>> numpy.histogram(a, bins=(25, 100))
(array([73]), array([ 25, 100]))
Additionally, when you have a list of strings, you have to explicitly specify the type, so that numpy
knows to produce an array of floats instead of a list of strings.
此外,当您有一个字符串列表时,您必须显式地指定类型,以便numpy知道生成一个浮点数组而不是字符串列表。
>>> strings = [str(i) for i in range(10)]
>>> numpy.array(strings)
array(['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'],
dtype='|S1')
>>> numpy.array(strings, dtype=float)
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
#3
7
Building on Sven's good approach, you can also do the more direct:
基于斯文的好方法,你也可以做更直接的:
numpy.count_nonzero((25 < a) & (a < 100))
This first creates an array of booleans with one boolean for each input number in array a
, and then count the number of non-False (i.e. True) values (which gives the number of matching numbers).
这首先为数组a中的每个输入数字创建一个布尔值数组,然后计算非false(即True)值的数量(它给出匹配数字的数量)。
Note, however, that this approach is twice as slow as Sven's .sum()
approach, on an array of 100k numbers (NumPy 1.6.1, Python 2.7.3)–about 300 µs versus 150 µs.
但是要注意,这种方法是慢两倍斯文.sum()方法,在100 k数字数组(NumPy 1.6.1,Python 2.7.3)——300µs与150µs。
#4
4
Sven's answer is the way to do it if you don't wish to further process matching values.
The following two examples return copies with only the matching values:
Sven的答案是,如果您不希望进一步处理匹配值,那么可以这样做。以下两个示例返回只有匹配值的副本:
np.compress((25 < a) & (a < 100), a).size
Or:
或者:
a[(25 < a) & (a < 100)].size
Example interpreter session:
翻译会话示例:
>>> import numpy as np
>>> a = np.random.randint(200,size=100)
>>> a
array([194, 131, 10, 100, 199, 123, 36, 14, 52, 195, 114, 181, 138,
144, 70, 185, 127, 52, 41, 126, 159, 39, 68, 118, 124, 119,
45, 161, 66, 29, 179, 194, 145, 163, 190, 150, 186, 25, 61,
187, 0, 69, 87, 20, 192, 18, 147, 53, 40, 113, 193, 178,
104, 170, 133, 69, 61, 48, 84, 121, 13, 49, 11, 29, 136,
141, 64, 22, 111, 162, 107, 33, 130, 11, 22, 167, 157, 99,
59, 12, 70, 154, 44, 45, 110, 180, 116, 56, 136, 54, 139,
26, 77, 128, 55, 143, 133, 137, 3, 83])
>>> np.compress((25 < a) & (a < 100),a).size
34
>>> a[(25 < a) & (a < 100)].size
34
The above examples use a "bit-wise and" (&) to do an element-wise computation along the two boolean arrays which you create for comparison purposes.
Another way to write Sven's excellent answer, for example, is:
上面的示例使用“按位计算”和(&)对您创建的两个布尔数组进行元素计算,以便进行比较。另一种写出斯文精彩答案的方法是:
np.bitwise_and(25 < a, a < 100).sum()
The boolean arrays contain True
values when the condition matches, and False
when it doesn't.
A bonus aspect of boolean values is that True
is equivalent to 1 and False
to 0.
布尔数组在条件匹配时包含真值,在条件不匹配时包含假值。布尔值的另一个好处是,True等于1,False等于0。
#5
2
I think @Sven Marnach answer is quite nice, because it operates in on the numpy array itself which will be fast and efficient (C implementation).
我认为@Sven Marnach的答案是相当不错的,因为它在numpy数组本身上运行,这将是快速和高效的(C实现)。
I like to put the test into one condition like 25 < x < 100
, so I would probably do it something like this:
我喜欢把测试放到一个条件,比如25 < x < 100,所以我可能会这样做:
len([x for x in a.ravel() if 25 < x < 100])
len([x在a.ravel()中表示x,如果25 < x < 100])
#1
54
If your array is called a
, the number of elements fulfilling 25 < x < 100
is
如果数组被称为a,则满足25 < x < 100的元素的数量为
((25 < a) & (a < 100)).sum()
The expression (25 < a) & (a < 100)
results in a Boolean array with the same shape as a
with the value True
for all elements that satisfy the condition. Summing over this Boolean array treats True
values as 1
and False
values as 0
.
表达式(25 < a)和(a < 100)生成一个与a具有相同形状的布尔数组,所有满足条件的元素的值都为True。对这个布尔数组求和后,真值为1,假值为0。
#2
8
You could use histogram
. Here's a basic usage example:
你可以用直方图。这里有一个基本的用法示例:
>>> import numpy
>>> a = numpy.random.random(size=100) * 100
>>> numpy.histogram(a, bins=(0.0, 7.3, 22.4, 55.5, 77, 79, 98, 100))
(array([ 8, 14, 34, 31, 0, 12, 1]),
array([ 0. , 7.3, 22.4, 55.5, 77. , 79. , 98. , 100. ]))
In your particular case, it would look something like this:
在你的例子中,它看起来是这样的:
>>> numpy.histogram(a, bins=(25, 100))
(array([73]), array([ 25, 100]))
Additionally, when you have a list of strings, you have to explicitly specify the type, so that numpy
knows to produce an array of floats instead of a list of strings.
此外,当您有一个字符串列表时,您必须显式地指定类型,以便numpy知道生成一个浮点数组而不是字符串列表。
>>> strings = [str(i) for i in range(10)]
>>> numpy.array(strings)
array(['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'],
dtype='|S1')
>>> numpy.array(strings, dtype=float)
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
#3
7
Building on Sven's good approach, you can also do the more direct:
基于斯文的好方法,你也可以做更直接的:
numpy.count_nonzero((25 < a) & (a < 100))
This first creates an array of booleans with one boolean for each input number in array a
, and then count the number of non-False (i.e. True) values (which gives the number of matching numbers).
这首先为数组a中的每个输入数字创建一个布尔值数组,然后计算非false(即True)值的数量(它给出匹配数字的数量)。
Note, however, that this approach is twice as slow as Sven's .sum()
approach, on an array of 100k numbers (NumPy 1.6.1, Python 2.7.3)–about 300 µs versus 150 µs.
但是要注意,这种方法是慢两倍斯文.sum()方法,在100 k数字数组(NumPy 1.6.1,Python 2.7.3)——300µs与150µs。
#4
4
Sven's answer is the way to do it if you don't wish to further process matching values.
The following two examples return copies with only the matching values:
Sven的答案是,如果您不希望进一步处理匹配值,那么可以这样做。以下两个示例返回只有匹配值的副本:
np.compress((25 < a) & (a < 100), a).size
Or:
或者:
a[(25 < a) & (a < 100)].size
Example interpreter session:
翻译会话示例:
>>> import numpy as np
>>> a = np.random.randint(200,size=100)
>>> a
array([194, 131, 10, 100, 199, 123, 36, 14, 52, 195, 114, 181, 138,
144, 70, 185, 127, 52, 41, 126, 159, 39, 68, 118, 124, 119,
45, 161, 66, 29, 179, 194, 145, 163, 190, 150, 186, 25, 61,
187, 0, 69, 87, 20, 192, 18, 147, 53, 40, 113, 193, 178,
104, 170, 133, 69, 61, 48, 84, 121, 13, 49, 11, 29, 136,
141, 64, 22, 111, 162, 107, 33, 130, 11, 22, 167, 157, 99,
59, 12, 70, 154, 44, 45, 110, 180, 116, 56, 136, 54, 139,
26, 77, 128, 55, 143, 133, 137, 3, 83])
>>> np.compress((25 < a) & (a < 100),a).size
34
>>> a[(25 < a) & (a < 100)].size
34
The above examples use a "bit-wise and" (&) to do an element-wise computation along the two boolean arrays which you create for comparison purposes.
Another way to write Sven's excellent answer, for example, is:
上面的示例使用“按位计算”和(&)对您创建的两个布尔数组进行元素计算,以便进行比较。另一种写出斯文精彩答案的方法是:
np.bitwise_and(25 < a, a < 100).sum()
The boolean arrays contain True
values when the condition matches, and False
when it doesn't.
A bonus aspect of boolean values is that True
is equivalent to 1 and False
to 0.
布尔数组在条件匹配时包含真值,在条件不匹配时包含假值。布尔值的另一个好处是,True等于1,False等于0。
#5
2
I think @Sven Marnach answer is quite nice, because it operates in on the numpy array itself which will be fast and efficient (C implementation).
我认为@Sven Marnach的答案是相当不错的,因为它在numpy数组本身上运行,这将是快速和高效的(C实现)。
I like to put the test into one condition like 25 < x < 100
, so I would probably do it something like this:
我喜欢把测试放到一个条件,比如25 < x < 100,所以我可能会这样做:
len([x for x in a.ravel() if 25 < x < 100])
len([x在a.ravel()中表示x,如果25 < x < 100])