因为我现在还不会用这个。。。emm。。。蒟蒻。。。只看了 从来没用过。。。。所以切一道水题。。。练一下。。。
人家讲的很好 https://blog.csdn.net/u012860428/article/details/41259377
题目大意:求出满足要求的p和q,使得对于给定的x,k,,输出一组满足要求的p,q即可;
下面对于x,k进行讨论;
1、若x能被k整除,那么只要p+q=k即可;
2、如果不能被其整除,则领,那么,x=p*a+q*(a+1);相当于对于不定方程求解,易知,(a,a+1)=1,所以可以先用扩展欧几里得算法求出一组满足
ap + bq= d 的解 其中d = gcd(p,q)
然后 P = p * x/d Q = q * x/d 因为求的是 ap + bq= d 的解 而我们要求ap + bq = x 的解 x = d * x/d 所以 求出的p 和 q 都乘上 x/d即可
即为解
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff; void gcd(LL a, LL b, LL& d, LL& x, LL& y)
{
if(!b)
{
d = a;
x = ;
y = ;
}
else
{
gcd(b, a%b, d, y, x);
y -= x*(a/b);
}
} int main()
{
int T;
cin>> T;
while(T--)
{
LL x, y, d, a, b, k, c;
cin>> c >> k;
if(c % k == )
{
cout<< << " " << k- <<endl; }
else
{
a = floor(c/(double)k);
b = ceil(c/(double)k);
gcd(a, b, d, x, y);
x*=c/d;
y*=c/d;
cout<< x << " " << y <<endl; } } return ;
}