I have a very large 2D array which looks something like this:
我有一个非常大的二维数组它看起来是这样的:
a=
[[a1, b1, c1],
[a2, b2, c2],
...,
[an, bn, cn]]
Using numpy, is there an easy way to get a new 2D array with e.g. 2 random rows from the initial array a (without replacement)?
使用numpy,是否有一种简单的方法可以从初始数组a(不替换)中获得带有2个随机行的2D数组?
e.g.
如。
b=
[[a4, b4, c4],
[a99, b99, c99]]
4 个解决方案
#1
95
>>> A = np.random.randint(5, size=(10,3))
>>> A
array([[1, 3, 0],
[3, 2, 0],
[0, 2, 1],
[1, 1, 4],
[3, 2, 2],
[0, 1, 0],
[1, 3, 1],
[0, 4, 1],
[2, 4, 2],
[3, 3, 1]])
>>> idx = np.random.randint(10, size=2)
>>> idx
array([7, 6])
>>> A[idx,:]
array([[0, 4, 1],
[1, 3, 1]])
Putting it together for a general case:
把它放在一起作为一般情况:
A[np.random.randint(A.shape[0], size=2), :]
For non replacement (numpy 1.7.0+):
For non replacement (numpy 1.7.0+):
A[np.random.choice(A.shape[0], 2, replace=False), :]
I do not believe there is a good way to generate random list without replacement before 1.7. Perhaps you can setup a small definition that ensures the two values are not the same.
我不相信在1.7之前没有一个好的方法来生成随机列表。也许您可以设置一个小定义来确保两个值不相同。
#2
25
This is an old post, but this is what works best for me:
这是一个古老的帖子,但这是最适合我的:
A[np.random.choice(A.shape[0], num_rows_2_sample, replace=False)]
change the replace=False to True to get the same thing, but with replacement.
将replace=False更改为True以获得相同的结果,但要使用替换。
#3
19
Another option is to create a random mask if you just want to down-sample your data by a certain factor. Say I want to down-sample to 25% of my original data set, which is currently held in the array data_arr
:
另一种选择是创建一个随机掩码,如果您只是想按某个因素对数据进行下样。假设我要将原始数据集的25%降采样,该数据集目前保存在数组data_arr中:
# generate random boolean mask the length of data
# use p 0.75 for False and 0.25 for True
mask = numpy.random.choice([False, True], len(data_arr), p=[0.75, 0.25])
Now you can call data_arr[mask]
and return ~25% of the rows, randomly sampled.
现在,您可以调用data_arr[mask]并返回随机抽样的大约25%的行。
#4
4
If you need the same rows but just a random sample then,
如果你需要相同的行但只是一个随机样本,
import random
new_array = random.sample(old_array,x)
Here x, has to be an 'int' defining the number of rows you want to randomly pick.
这里x,必须是一个'int'定义你想随机选择的行数。
#1
95
>>> A = np.random.randint(5, size=(10,3))
>>> A
array([[1, 3, 0],
[3, 2, 0],
[0, 2, 1],
[1, 1, 4],
[3, 2, 2],
[0, 1, 0],
[1, 3, 1],
[0, 4, 1],
[2, 4, 2],
[3, 3, 1]])
>>> idx = np.random.randint(10, size=2)
>>> idx
array([7, 6])
>>> A[idx,:]
array([[0, 4, 1],
[1, 3, 1]])
Putting it together for a general case:
把它放在一起作为一般情况:
A[np.random.randint(A.shape[0], size=2), :]
For non replacement (numpy 1.7.0+):
For non replacement (numpy 1.7.0+):
A[np.random.choice(A.shape[0], 2, replace=False), :]
I do not believe there is a good way to generate random list without replacement before 1.7. Perhaps you can setup a small definition that ensures the two values are not the same.
我不相信在1.7之前没有一个好的方法来生成随机列表。也许您可以设置一个小定义来确保两个值不相同。
#2
25
This is an old post, but this is what works best for me:
这是一个古老的帖子,但这是最适合我的:
A[np.random.choice(A.shape[0], num_rows_2_sample, replace=False)]
change the replace=False to True to get the same thing, but with replacement.
将replace=False更改为True以获得相同的结果,但要使用替换。
#3
19
Another option is to create a random mask if you just want to down-sample your data by a certain factor. Say I want to down-sample to 25% of my original data set, which is currently held in the array data_arr
:
另一种选择是创建一个随机掩码,如果您只是想按某个因素对数据进行下样。假设我要将原始数据集的25%降采样,该数据集目前保存在数组data_arr中:
# generate random boolean mask the length of data
# use p 0.75 for False and 0.25 for True
mask = numpy.random.choice([False, True], len(data_arr), p=[0.75, 0.25])
Now you can call data_arr[mask]
and return ~25% of the rows, randomly sampled.
现在,您可以调用data_arr[mask]并返回随机抽样的大约25%的行。
#4
4
If you need the same rows but just a random sample then,
如果你需要相同的行但只是一个随机样本,
import random
new_array = random.sample(old_array,x)
Here x, has to be an 'int' defining the number of rows you want to randomly pick.
这里x,必须是一个'int'定义你想随机选择的行数。