I have a 3D-numpy array of a gray image, which looks something like this:
我有一个灰色图像的3D-numpy数组,看起来像这样:
[[[120,120,120],[67,67,67]]...]
Obviously I have every R G and B the same because it is a gray image - this is redundent. I want to get a new 2D array which looks like:
显然我每个R G和B都是相同的,因为它是一个灰色的图像 - 这是多余的。我想得到一个新的2D数组,看起来像:
[[120,67]...]
Which means to take every pixel's array [x,x,x] to just the value x
这意味着将每个像素的数组[x,x,x]仅取值x
How can I do that?
我怎样才能做到这一点?
1 个解决方案
#1
12
If the shape of your ndarray
is (M, N, 3), then you can get an (M, N) gray-scale image like this:
如果你的ndarray的形状是(M,N,3),那么你可以得到这样的(M,N)灰度图像:
>>> gray = img[:,:,0]
#1
12
If the shape of your ndarray
is (M, N, 3), then you can get an (M, N) gray-scale image like this:
如果你的ndarray的形状是(M,N,3),那么你可以得到这样的(M,N)灰度图像:
>>> gray = img[:,:,0]