How can I put a numpy multidimensional array in a HDF5 file using PyTables?
如何使用PyTables在HDF5文件中放置一个numpy多维数组?
From what I can tell I can't put an array field in a pytables table.
根据我所知道的,我不能将数组字段放在一个pytables表中。
I also need to store some info about this array and be able to do mathematical computations on it.
我还需要存储一些关于这个数组的信息,并能够对它进行数学计算。
Any suggestions?
有什么建议吗?
1 个解决方案
#1
33
There may be a simpler way, but this is how you'd go about doing it, as far as I know:
也许有一种更简单的方法,但据我所知,这就是你要做的事情:
import numpy as np
import tables
# Generate some data
x = np.random.random((100,100,100))
# Store "x" in a chunked array...
f = tables.openFile('test.hdf', 'w')
atom = tables.Atom.from_dtype(x.dtype)
ds = f.createCArray(f.root, 'somename', atom, x.shape)
ds[:] = x
f.close()
If you want to specify the compression to use, have a look at tables.Filters
. E.g.
如果您想指定要使用的压缩,请查看表. filter。如。
import numpy as np
import tables
# Generate some data
x = np.random.random((100,100,100))
# Store "x" in a chunked array with level 5 BLOSC compression...
f = tables.openFile('test.hdf', 'w')
atom = tables.Atom.from_dtype(x.dtype)
filters = tables.Filters(complib='blosc', complevel=5)
ds = f.createCArray(f.root, 'somename', atom, x.shape, filters=filters)
ds[:] = x
f.close()
There's probably a simpler way for a lot of this... I haven't used pytables
for anything other than table-like data in a long while.
也许有一种更简单的方法来解决这些问题……在很长一段时间内,我还没有使用pytables作为表类数据。
Note: with pytables 3.0, f.createCArray
was renamed to f.create_carray
. It can also accept the array directly, without specifying the atom
,
注:pytables 3.0, f。createCArray被重命名为f.create_carray。它也可以直接接受数组,而不指定原子,
f.create_carray('/', 'somename', obj=x, filters=filters)
#1
33
There may be a simpler way, but this is how you'd go about doing it, as far as I know:
也许有一种更简单的方法,但据我所知,这就是你要做的事情:
import numpy as np
import tables
# Generate some data
x = np.random.random((100,100,100))
# Store "x" in a chunked array...
f = tables.openFile('test.hdf', 'w')
atom = tables.Atom.from_dtype(x.dtype)
ds = f.createCArray(f.root, 'somename', atom, x.shape)
ds[:] = x
f.close()
If you want to specify the compression to use, have a look at tables.Filters
. E.g.
如果您想指定要使用的压缩,请查看表. filter。如。
import numpy as np
import tables
# Generate some data
x = np.random.random((100,100,100))
# Store "x" in a chunked array with level 5 BLOSC compression...
f = tables.openFile('test.hdf', 'w')
atom = tables.Atom.from_dtype(x.dtype)
filters = tables.Filters(complib='blosc', complevel=5)
ds = f.createCArray(f.root, 'somename', atom, x.shape, filters=filters)
ds[:] = x
f.close()
There's probably a simpler way for a lot of this... I haven't used pytables
for anything other than table-like data in a long while.
也许有一种更简单的方法来解决这些问题……在很长一段时间内,我还没有使用pytables作为表类数据。
Note: with pytables 3.0, f.createCArray
was renamed to f.create_carray
. It can also accept the array directly, without specifying the atom
,
注:pytables 3.0, f。createCArray被重命名为f.create_carray。它也可以直接接受数组,而不指定原子,
f.create_carray('/', 'somename', obj=x, filters=filters)