I am trying to correlate users with one another and assign a common ID for web site visitors.
我正在尝试将用户相互关联,并为web站点访问者分配一个公共ID。
I have the rows (call it table a) a.UUID, a.seen_time, a.ip_address, a.user_id, a.subdomain
, and I am trying to come up with a a.matched_id
whereby if the row IP address is +/- 4hrs of the last (i.e. continuously), a single matched_id
is assigned to those rows.
我有行(称为表a) a。UUID,。seen_time,。ip_address,。user_id,。子定义域,我想要得到a。matched_id如果行IP地址是最后一行的+/- 4hrs(即连续),则为这些行分配一个matched_id。
Note that for my purposes, an IP on 2 different subdomains are NOT necessarily the same match, unless they have the same user ID.
注意,就我的目的而言,两个不同子域上的IP不一定是相同的匹配,除非它们具有相同的用户ID。
Here is the basic process I would follow in a regular programming language (however I need to construct SQL):
下面是我在常规编程语言中要遵循的基本过程(但是我需要构造SQL):
- Get the necessary rows of table a
- 获取表a所需的行
- For each row, if any row ever has a matching user_id (subdomain doesn't matter), assign them the same
matched_id
(all else being equal, let's useMIN(uuid)
) - 对于每一行,如果任何一行都有匹配的user_id(子域无关紧要),那么为它们分配相同的matched_id(其他条件相同,我们使用MIN(uid)))
-
Partition into subdomain sets.
划分为子域集。
For each of those subdomain partitions:
对于每个子域分区:
-
Now partition into buckets of IP addresses where each row is < 4hrs from the seen_time before(/after) it (ie on a row-by-row basis)
现在,将每一行从seen_time (/after)到每一行的IP地址划分为分段(即以行为单位)
For each of those IP address partitions:
对于每个IP地址分区:
- If any 1 item has a
matched_id
already, assign that to all. Otherwise, assign a newmatched_id
to all (usingMIN(uuid)
). Continue. - 如果任何一项已经有matched_id,则将其分配给所有人。否则,为所有人分配一个新的matched_id(使用MIN(uuid))。继续下去。
- If any 1 item has a
-
I am using Amazon Redshift which is more or less queried the same as Postgres but with a few more limitations (if interested, see unsupported features and unsupported functions): Postgres/ANSI SQL answers accepted.
我使用的是Amazon Redshift,它的查询和Postgres差不多,但是有一些更多的限制(如果有兴趣,请查看不支持的特性和不支持的功能):Postgres/ANSI SQL答案是可以接受的。
How can I construct this query in an efficient fashion?
如何有效地构造这个查询?
What is the basic SQL process I must follow?
我必须遵循的基本SQL过程是什么?
Thanks
谢谢
-- UPDATE --
——更新
I have made the following progress shown below:
我已取得以下进展:
- I don't know how efficient it is
- 我不知道它有多高效
- I used
discovery_time
instead ofseen_time
as referenced to above, and the table namemydata
instead ofa
, although its sometimes aliased asa
andb
- 我使用了discovery_time代替了上面提到的seen_time,使用了表名mydata而不是a,尽管它有时也被称为a和b
- It uses an MD5 instead of
MIN(UUID)
since I believe getting that info would require another query - anyway, it doesn't matter too much - 它使用的是MD5而不是MIN(UUID),因为我认为获取该信息需要另一个查询——无论如何,这并不重要
- Key problem: It does not count the +/- 4 hrs 'from the last row' instead its as an absolute
- 关键问题:它并没有把+/- 4 hrs从最后一行改为绝对。
Code:
代码:
--UPDATE mydata m SET matched_id = NULL; --for testing
WITH cte1 AS (
--start with the max discovery time and go down from there
--select the matched id if one already exists
SELECT m.ip, m.subdomain, MAX(m.discovery_time) AS max_discovery_time,
CASE WHEN MIN(m.user_id) IS NOT NULL THEN MD5(MIN(m.user_id))
ELSE MIN(m.matched_id) END AS known_matched_id
FROM mydata m
GROUP BY m.ip, m.subdomain
), cte2 AS (
SELECT m.uuid, CASE WHEN c.known_matched_id IS NOT NULL THEN c.known_matched_id
ELSE MD5(CONCAT(c.ip, c.subdomain, c.max_discovery_time)) END AS matched_id
FROM mydata m
--IP on different subdomains are not necessarily the same match
RIGHT OUTER JOIN cte1 c ON CONCAT(c.ip, c.subdomain) = CONCAT(m.ip, m.subdomain)
WHERE m.discovery_time >= (c.max_discovery_time - INTERVAL '4 hours')
--Does not work 'row by row' instead in terms of absolutes - need to make this recursive somehow,
--but Redshift does not support recursive CTEs or user-defined functions
)
UPDATE mydata m
SET matched_id = c.matched_id
FROM cte2 c
WHERE c.uuid = m.uuid;
--view result for an example IP
SELECT m.discovery_time, m.ip, m.matched_id, m.uuid
FROM mydata m
WHERE m.ip = '12.34.56.78'
ORDER BY m.ip, m.discovery_time;
And in case you are wanting to test, the following create script should do you:
如果您想要测试,以下创建脚本应该做:
CREATE TABLE mydata
(
ip character varying(255),
subdomain character varying(255),
matched_id character varying(255),
user_id character varying(255),
uuid character varying(255) NOT NULL,
discovery_time timestamp without time zone,
CONSTRAINT pk_mydata PRIMARY KEY (uuid)
);
-- should all get the same matched_id in result, except the 1st
INSERT INTO mydata (ip, subdomain, matched_id, user_id, uuid, discovery_time) VALUES ('12.34.56.78', 'sub1', NULL, NULL, '222b5991-9780-11e3-9304-127b2ab15ea7', '2014-02-14 00:03:26');
INSERT INTO mydata (ip, subdomain, matched_id, user_id, uuid, discovery_time) VALUES ('12.34.56.78', 'sub1', NULL, NULL, '333b5991-9780-11e3-9304-127b2ab15ea7', '2014-02-16 22:22:26');
INSERT INTO mydata (ip, subdomain, matched_id, user_id, uuid, discovery_time) VALUES ('12.34.56.78', 'sub1', NULL, NULL, '379b641b-9782-11e3-9304-127b2ab15ea7', '2014-02-17 03:18:48');
INSERT INTO mydata (ip, subdomain, matched_id, user_id, uuid, discovery_time) VALUES ('12.34.56.78', 'sub1', NULL, NULL, 'ac0f6416-977e-11e3-9304-127b2ab15ea7', '2014-02-17 02:53:25');
INSERT INTO mydata (ip, subdomain, matched_id, user_id, uuid, discovery_time) VALUES ('12.34.56.78', 'sub1', NULL, NULL, '11fb5991-9780-11e3-9304-127b2ab15ea7', '2014-02-17 03:03:26');
INSERT INTO mydata (ip, subdomain, matched_id, user_id, uuid, discovery_time) VALUES ('12.34.56.78', 'sub1', NULL, NULL, '849d8d61-9781-11e3-9304-127b2ab15ea7', '2014-02-17 03:13:48');
The expected output would then be for all those rows to be assigned the same matched_id
, except for the first one (in the INSERT lines) since its time is way more than 4hrs out from the next most recently seen time (and nor does it have a user_id
to match to any others).
预期的输出将被分配相同的matched_id那些行,除了第一个(插入行)以来的时间远远超过4小时从下一个最近看到时间(而且也没有user_id匹配任何其他人)。
-- UPDATE 2 --
——更新2
- Still not much luck on the continuous row-by-row results. This version seems to work that way if run repeatedly, though
- 在连续的逐行结果中仍然没有多少运气。不过,如果重复运行,这个版本似乎也可以这样工作
- Interested to make it efficient
- 有兴趣使它有效
- New columns
min_time
andmax_time
denote the min and max times in a 4hr set - 新列min_time和max_time表示4hr集中的最小和最大时间
Code:
代码:
-- Set user IDs that are the same
UPDATE mydata AS m SET matched_id = matching.new_matched_id
FROM (
SELECT a.user_id, MIN(a.uuid) AS new_matched_id FROM mydata a
WHERE a.user_id IS NOT NULL
GROUP BY a.user_id
) AS matching
WHERE m.matched_id IS NULL
AND m.user_id IS NOT NULL
AND matching.user_id = m.user_id;
-- Find rows +/- 4hrs of each other
-- 1. Set min and max times for a 4hr set --
UPDATE mydata my SET min_time = matching.min_dist, max_time = matching.max_dist, matched_id = new_matched_id
FROM (
-- mintime is approx
SELECT a.uuid, MIN(b.matched_id) AS new_matched_id, max(COALESCE(b.min_time, b.discovery_time)) - interval '4 hour' AS min_dist, max(COALESCE(b.max_time, b.discovery_time)) + interval '4 hour' AS max_dist
FROM mydata a
JOIN mydata b
ON (a.ip = b.ip AND a.subdomain = b.subdomain)
GROUP BY a.uuid
HAVING ABS(EXTRACT(EPOCH FROM max(COALESCE(a.min_time, b.discovery_time)) - a.discovery_time)/3600) <= 4
) matching
WHERE matching.uuid = my.uuid
AND min_time IS NULL;
-- 2. Set the matched id of all the +/- 4hr records --
UPDATE mydata m SET matched_id = new_matched_id, min_time = matching.min_time, max_time = matching.max_time
FROM (
SELECT a.uuid, MAX(b.min_time) AS min_time, MAX(b.max_time) AS max_time, COALESCE(a.matched_id, MIN(b.uuid)) AS new_matched_id FROM mydata a
INNER JOIN mydata b
ON a.ip = b.ip AND a.subdomain = b.subdomain
WHERE a.discovery_time >= b.min_time
AND a.discovery_time <= b.max_time
GROUP BY a.uuid
) matching
WHERE matching.uuid = m.uuid;
2 个解决方案
#1
3
I'm not sure I understand the question, so but it seems from whereby if the row IP address is +/- 4hrs of the last that you need the "last" time for each IP address (or IP + UUID, not sure). That you get from
我不确定我是否理解这个问题,但似乎如果行IP地址是+/- 4hrs,那么每个IP地址(或IP + UUID,不确定)都需要“最后”时间。你从
select ip_address, max(seen_time) group by ip_address
You could make a virtual table out of that or use a correlated subquery, see next.
您可以从中创建一个虚拟表,或者使用相关的子查询,请参阅next。
I'm not a Postgres user, but there's surely a function that measures hours. As a rough sketch,
我不是Postgres的用户,但肯定有一个度量小时的函数。作为一个草图,
select * from a as A
where exists (
select 1 from a
where ip_address = A.ip_address
and UUID = A.UUID
group by ip_address, UUID
having hour(max(seen_time)) - hour(A.seen_time) < 4
)
HTH.
HTH。
#2
2
I suggest:
我建议:
Add columns for working to your table a
: id_1
, id_2
, min_time
, max_time
添加用于工作的列到表a: id_1、id_2、min_time、max_time
Update id_1
to be the min(uuid)
for any records with the same user_id
. Something like this:
将id_1更新为具有相同user_id的任何记录的最小值(uuid)。是这样的:
-- match any records with a userid
update a
set id_1 = x.uuid
from a
inner join (
select min(uuid) as uuid, userid
from a where userid is not null group by userid ) as x
on a.userId = x.userId
Update columns min_time
and max_time
to be last_seen minus/plus 4 hours. You could do all this in the next query, but in case you're re-using these values later it'll be more efficient to only calculate once.
更新列min_time和max_time为last_seen - / + 4小时。您可以在下一个查询中完成所有这些工作,但如果您稍后重用这些值,那么只计算一次就更有效了。
update a
set min_time = seen_time - interval '4 hour'
, max_time = seen_time + interval '4 hour'
Join a onto itself, matching records by ip
and subdomain
, where a.seen_time
within 4 hours of the other record. e.g.:
将a连接到自身,按ip和子域匹配记录,其中a。在其他记录后的4小时内查看时间。例如:
update a
set id_2 = other_uuid
from (
-- join a onto all matching records by ip and subdomain
-- where a.seen_time within 4 hours of the other record.
select a.uuid, min(other.uuid) as other_uuid
from a
inner join a AS other
on a.ip_address = other.ip_address
and a.subdomain = other.subdomain
and a.uuid <> other.uuid
where a.seen_time > other.min_time
and a.seen_time < other.max_time
group by a.uuid
) AS matching
where a.uuid = matching.uuid
-- no need to match ones already matched on userid
and id_1 is null
Now id_1
and id_2
combined is what you're looking for.
现在id_1和id_2结合起来就是你要找的。
#1
3
I'm not sure I understand the question, so but it seems from whereby if the row IP address is +/- 4hrs of the last that you need the "last" time for each IP address (or IP + UUID, not sure). That you get from
我不确定我是否理解这个问题,但似乎如果行IP地址是+/- 4hrs,那么每个IP地址(或IP + UUID,不确定)都需要“最后”时间。你从
select ip_address, max(seen_time) group by ip_address
You could make a virtual table out of that or use a correlated subquery, see next.
您可以从中创建一个虚拟表,或者使用相关的子查询,请参阅next。
I'm not a Postgres user, but there's surely a function that measures hours. As a rough sketch,
我不是Postgres的用户,但肯定有一个度量小时的函数。作为一个草图,
select * from a as A
where exists (
select 1 from a
where ip_address = A.ip_address
and UUID = A.UUID
group by ip_address, UUID
having hour(max(seen_time)) - hour(A.seen_time) < 4
)
HTH.
HTH。
#2
2
I suggest:
我建议:
Add columns for working to your table a
: id_1
, id_2
, min_time
, max_time
添加用于工作的列到表a: id_1、id_2、min_time、max_time
Update id_1
to be the min(uuid)
for any records with the same user_id
. Something like this:
将id_1更新为具有相同user_id的任何记录的最小值(uuid)。是这样的:
-- match any records with a userid
update a
set id_1 = x.uuid
from a
inner join (
select min(uuid) as uuid, userid
from a where userid is not null group by userid ) as x
on a.userId = x.userId
Update columns min_time
and max_time
to be last_seen minus/plus 4 hours. You could do all this in the next query, but in case you're re-using these values later it'll be more efficient to only calculate once.
更新列min_time和max_time为last_seen - / + 4小时。您可以在下一个查询中完成所有这些工作,但如果您稍后重用这些值,那么只计算一次就更有效了。
update a
set min_time = seen_time - interval '4 hour'
, max_time = seen_time + interval '4 hour'
Join a onto itself, matching records by ip
and subdomain
, where a.seen_time
within 4 hours of the other record. e.g.:
将a连接到自身,按ip和子域匹配记录,其中a。在其他记录后的4小时内查看时间。例如:
update a
set id_2 = other_uuid
from (
-- join a onto all matching records by ip and subdomain
-- where a.seen_time within 4 hours of the other record.
select a.uuid, min(other.uuid) as other_uuid
from a
inner join a AS other
on a.ip_address = other.ip_address
and a.subdomain = other.subdomain
and a.uuid <> other.uuid
where a.seen_time > other.min_time
and a.seen_time < other.max_time
group by a.uuid
) AS matching
where a.uuid = matching.uuid
-- no need to match ones already matched on userid
and id_1 is null
Now id_1
and id_2
combined is what you're looking for.
现在id_1和id_2结合起来就是你要找的。