Description
有N个位置,M个操作。操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c。如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少。
Input
第一行N,M。
接下来M行,每行形如1 a b c或2 a b c。
Output
输出每个询问的结果。
Sample Input
2 5
1 1 2 1
1 1 2 2
2 1 1 2
2 1 1 1
2 1 2 3
Sample Output
1
2
1
HINT
【样例说明】
第一个操作 后位置 1 的数只有 1 , 位置 2 的数也只有 1 。 第二个操作 后位置 1的数有 1 、 2 ,位置 2 的数也有 1 、 2 。 第三次询问 位置 1 到位置 1 第 2 大的数 是1 。 第四次询问 位置 1 到位置 1 第 1 大的数是 2 。 第五次询问 位置 1 到位置 2 第 3大的数是 1 。
N,M<=50000,N,M<=50000,a<=b<=N,1操作中abs(c)<=N,2操作中c<=Maxlongint。
整体二分裸题……顺便可以了解一下用树状数组实现区间加和区间求和操作。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#define LL long long
using namespace std;
const int N=1e5+;
int n,m,qid,mx,ans[N];
LL tr[N][];
bool f[N];
struct node{int op,l,r,c,id;}a[N],tmp[N];
LL read()
{
LL x=,f=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int lowbit(int x){return x&(-x);}
void add(int x,LL c,int id){while(x<=n)tr[x][id]+=c,x+=lowbit(x);}
void insert(int id,LL c){add(id,c,);add(id,c*id,);}
LL query(int x,int id){LL ans=;while(x)ans+=tr[x][id],x-=lowbit(x);return ans;}
LL ask(int id){LL ans=(id+)*query(id,)-query(id,);return ans;}
void work(int x,int y,int l,int r)
{
if(l==r){for(int i=x;i<=y;i++)if(a[i].op==)ans[a[i].id]=l;return;}
int h1=x,h2=x,mid=(l+r)>>;
for(int i=x;i<=y;i++)
if(a[i].op==)
{
LL temp=ask(a[i].r)-ask(a[i].l-);
if(temp<a[i].c)f[i]=false,a[i].c-=temp;
else f[i]=true,h2++;
}
else if(a[i].c<=mid)insert(a[i].l,),insert(a[i].r+,-),f[i]=true,h2++;
else f[i]=false;
for(int i=x;i<=y;i++)if(a[i].op==&&a[i].c<=mid)insert(a[i].l,-),insert(a[i].r+,);
for(int i=x;i<=y;i++)if(f[i])tmp[h1++]=a[i];else tmp[h2++]=a[i];
for(int i=x;i<=y;i++)a[i]=tmp[i];
work(x,h1-,l,mid);work(h1,y,mid+,r);
}
int main()
{
n=read();m=read();
for(int i=;i<=m;i++)
{
a[i].op=read();a[i].l=read();a[i].r=read();a[i].c=read();
if(a[i].op==)a[i].c=n-a[i].c+,mx=max(mx,a[i].c);
else a[i].id=++qid;
}
work(,m,,mx);
for(int i=;i<=qid;i++)printf("%d\n",n-ans[i]+);
return ;
}