This gives the expected result
这给出了预期的结果。
x = random.rand(1) + random.rand(1)*1j
print x.dtype
print x, x.real, x.imag
and this works
这工作
C = zeros((2,2),dtype=complex)
C[0,0] = 1+1j
print C
but if we change it to
但是如果我们把它改成
C[0,0] = 1+1j + x
I get "TypeError: can't convert complex to float".
我得到"TypeError: can't convert complex to float"
If we now omit the explicit dtype = complex
, I get "ValueError: setting an array element with a sequence".
如果我们现在省略了显式的dtype = complex,我就会得到“ValueError:用序列设置数组元素”。
Can someone explain what's going on, and how to do this without errors? I'm lost.
有人能解释一下发生了什么,以及如何在没有错误的情况下做到这一点吗?我迷路了。
2 个解决方案
#1
5
To insert complex x
or x + something
into C
, you apparently need to treat it as if it were an array, so either index into x
or assign it to a slice of C
:
要将复杂的x或x +某项插入C中,显然需要把它当作一个数组来处理,因此可以将它作为x的索引,也可以将它赋给C的切片:
>>> C
array([[ 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j]])
>>> C[0, 0:1] = x
>>> C
array([[ 0.47229555+0.7957525j, 0.00000000+0.j ],
[ 0.00000000+0.j , 0.00000000+0.j ]])
>>> C[1, 1] = x[0] + 1+1j
>>> C
array([[ 0.47229555+0.7957525j, 0.00000000+0.j ],
[ 0.00000000+0.j , 1.47229555+1.7957525j]])
It looks like NumPy isn't handling this case correctly. Consider submitting a bug report.
看起来NumPy没有正确地处理这个问题。考虑提交错误报告。
#2
14
Actually, none of the proposed solutions worked in my case (Python 2.7.6, NumPy 1.8.2). But I've found out, that change of dtype
from complex
(standard Python library) to numpy.complex_
may help:
实际上,在我的例子中,所提出的解决方案都不起作用(Python 2.7.6, NumPy 1.8.2)。但是我已经发现,dtype从复杂的(标准的Python库)变为numpy.complex_可能会有帮助:
>>> import numpy as np
>>> x = 1 + 2 * 1j
>>> C = np.zeros((2,2),dtype=np.complex_)
>>> C
array([[ 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j]])
>>> C[0,0] = 1+1j + x
>>> C
array([[ 2.+3.j, 0.+0.j],
[ 0.+0.j, 0.+0.j]])
#1
5
To insert complex x
or x + something
into C
, you apparently need to treat it as if it were an array, so either index into x
or assign it to a slice of C
:
要将复杂的x或x +某项插入C中,显然需要把它当作一个数组来处理,因此可以将它作为x的索引,也可以将它赋给C的切片:
>>> C
array([[ 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j]])
>>> C[0, 0:1] = x
>>> C
array([[ 0.47229555+0.7957525j, 0.00000000+0.j ],
[ 0.00000000+0.j , 0.00000000+0.j ]])
>>> C[1, 1] = x[0] + 1+1j
>>> C
array([[ 0.47229555+0.7957525j, 0.00000000+0.j ],
[ 0.00000000+0.j , 1.47229555+1.7957525j]])
It looks like NumPy isn't handling this case correctly. Consider submitting a bug report.
看起来NumPy没有正确地处理这个问题。考虑提交错误报告。
#2
14
Actually, none of the proposed solutions worked in my case (Python 2.7.6, NumPy 1.8.2). But I've found out, that change of dtype
from complex
(standard Python library) to numpy.complex_
may help:
实际上,在我的例子中,所提出的解决方案都不起作用(Python 2.7.6, NumPy 1.8.2)。但是我已经发现,dtype从复杂的(标准的Python库)变为numpy.complex_可能会有帮助:
>>> import numpy as np
>>> x = 1 + 2 * 1j
>>> C = np.zeros((2,2),dtype=np.complex_)
>>> C
array([[ 0.+0.j, 0.+0.j],
[ 0.+0.j, 0.+0.j]])
>>> C[0,0] = 1+1j + x
>>> C
array([[ 2.+3.j, 0.+0.j],
[ 0.+0.j, 0.+0.j]])