Is there a better way to do this?
有一个更好的方法吗?
if a > 1:
a = 1
if a < 0:
a = 0
I was thinking of using a function because I have a lot of these in my code, Was curious if there was a shorter comprehensible way to do it.
我正在考虑使用一个函数,因为我的代码中有很多这些函数,很奇怪是否有一个更简单易懂的方法。
2 个解决方案
#1
8
What you describe is usually called clipping. There are several ways to do clipping.
你描述的通常称为剪裁。有几种方法可以进行裁剪。
Library (numpy
)
You can use numpy.clip
for that:
您可以使用numpy.clip:
numpy.clip(a, a_min, a_max, out=None)
So:
所以:
import numpy
numpy.clip(x,0,1)
Although since function calls in Python are expensive, and numpy
usually processes data in batch, for a single value it will result in computational overhead.
虽然由于Python中的函数调用很昂贵,并且numpy通常批量处理数据,但对于单个值,它将导致计算开销。
For example:
例如:
>>> x = -2.5
>>> numpy.clip(x,0,1)
0.0
>>> x = 2.5
>>> numpy.clip(x,0,1)
1.0
>>> x = 0.5
>>> numpy.clip(x,0,1)
0.5
Usually you use numpy
to perform operations on (large) matrices, for instance if you have to process a 1000x1000 matrix, than using numpy
will definitely pay off.
通常你使用numpy对(大)矩阵执行操作,例如,如果你必须处理1000x1000矩阵,那么使用numpy肯定会得到回报。
Pure Python
A pure python approach can be obtained with:
可以通过以下方式获得纯python方法:
max(0,min(1,x))
But here you have two calls, as a result, it will be slower than using if
statements.
但是这里有两个调用,因此它比使用if语句慢。
Finally if you stick with the if
-code, you can optimize it a tiny bit by using an elif
:
最后,如果你坚持使用if-code,你可以使用elif优化它:
if x < 0:
x = 0
elif x > 1:
x = 1
Or a more generic function:
或者更通用的功能:
def clip(x,min,max):
if x < min:
return min
elif x > max:
return max
return x
#2
4
I'd always use something like max(0, min(1, x))
. If x is more than 1, min(1, x)
will be 1, and max(0, 1)
is still 1. If x is less than 0, min(1, x)
will be x
, and max(0, x)
will be 0.
我总是使用像max(0,min(1,x))这样的东西。如果x大于1,则min(1,x)为1,max(0,1)仍为1.如果x小于0,则min(1,x)为x,max(0, x)将为0。
#1
8
What you describe is usually called clipping. There are several ways to do clipping.
你描述的通常称为剪裁。有几种方法可以进行裁剪。
Library (numpy
)
You can use numpy.clip
for that:
您可以使用numpy.clip:
numpy.clip(a, a_min, a_max, out=None)
So:
所以:
import numpy
numpy.clip(x,0,1)
Although since function calls in Python are expensive, and numpy
usually processes data in batch, for a single value it will result in computational overhead.
虽然由于Python中的函数调用很昂贵,并且numpy通常批量处理数据,但对于单个值,它将导致计算开销。
For example:
例如:
>>> x = -2.5
>>> numpy.clip(x,0,1)
0.0
>>> x = 2.5
>>> numpy.clip(x,0,1)
1.0
>>> x = 0.5
>>> numpy.clip(x,0,1)
0.5
Usually you use numpy
to perform operations on (large) matrices, for instance if you have to process a 1000x1000 matrix, than using numpy
will definitely pay off.
通常你使用numpy对(大)矩阵执行操作,例如,如果你必须处理1000x1000矩阵,那么使用numpy肯定会得到回报。
Pure Python
A pure python approach can be obtained with:
可以通过以下方式获得纯python方法:
max(0,min(1,x))
But here you have two calls, as a result, it will be slower than using if
statements.
但是这里有两个调用,因此它比使用if语句慢。
Finally if you stick with the if
-code, you can optimize it a tiny bit by using an elif
:
最后,如果你坚持使用if-code,你可以使用elif优化它:
if x < 0:
x = 0
elif x > 1:
x = 1
Or a more generic function:
或者更通用的功能:
def clip(x,min,max):
if x < min:
return min
elif x > max:
return max
return x
#2
4
I'd always use something like max(0, min(1, x))
. If x is more than 1, min(1, x)
will be 1, and max(0, 1)
is still 1. If x is less than 0, min(1, x)
will be x
, and max(0, x)
will be 0.
我总是使用像max(0,min(1,x))这样的东西。如果x大于1,则min(1,x)为1,max(0,1)仍为1.如果x小于0,则min(1,x)为x,max(0, x)将为0。