Python删除数组中的所有负值

时间:2022-11-18 21:26:22

What is the most efficient way to remove negative elements in an array? I have tried numpy.delete and Remove all specific value from array and code of the form x[x != i].

删除数组中负面元素的最有效方法是什么?我尝试过numpy.delete并从x [x!= i]格式的数组和代码中删除所有特定值。

For:

对于:

import numpy as np
x = np.array([-2, -1.4, -1.1, 0, 1.2, 2.2, 3.1, 4.4, 8.3, 9.9, 10, 14, 16.2])

I want to end up with an array:

我想最终得到一个数组:

[0, 1.2, 2.2, 3.1, 4.4, 8.3, 9.9, 10, 14, 16.2]

4 个解决方案

#1


22  

In [2]: x[x >= 0]
Out[2]: array([  0. ,   1.2,   2.2,   3.1,   4.4,   8.3,   9.9,  10. ,  14. ,  16.2])

#2


4  

There's probably a cool way to do this is numpy because numpy is magic to me, but:

这可能是一个很酷的方法,因为numpy对我来说是神奇的,但是:

x = np.array( [ num for num in x if num >= 0 ] )

#3


4  

If performance is important, you could take advantage of the fact that your np.array is sorted and use numpy.searchsorted

如果性能很重要,您可以利用np.array的排序并使用numpy.searchsorted

For example:

例如:

In [8]: x[np.searchsorted(x, 0) :]
Out[8]: array([  0. ,   1.2,   2.2,   3.1,   4.4,   8.3,   9.9,  10. ,  14. ,  16.2])

In [9]: %timeit x[np.searchsorted(x, 0) :]
1000000 loops, best of 3: 1.47 us per loop

In [10]: %timeit x[x >= 0]
100000 loops, best of 3: 4.5 us per loop

The difference in performance will increase as the size of the array increases because np.searchsorted does a binary search that is O(log n) vs. O(n) linear search that x >= 0 is doing.

随着数组大小的增加,性能的差异将会增加,因为np.searchsorted执行二进制搜索,即O(log n)与O(n)线性搜索x> = 0正在进行。

In [11]: x = np.arange(-1000, 1000)

In [12]: %timeit x[np.searchsorted(x, 0) :]
1000000 loops, best of 3: 1.61 us per loop

In [13]: %timeit x[x >= 0]
100000 loops, best of 3: 9.87 us per loop

#4


2  

In numpy:

在numpy:

b = array[array>=0]

Example:

例:

>>> import numpy as np
>>> arr = np.array([-2, -1.4, -1.1, 0, 1.2, 2.2, 3.1, 4.4, 8.3, 9.9, 10, 14, 16.2])
>>> arr = arr[arr>=0]
>>> arr
array([  0. ,   1.2,   2.2,   3.1,   4.4,   8.3,   9.9,  10. ,  14. ,  16.2])

#1


22  

In [2]: x[x >= 0]
Out[2]: array([  0. ,   1.2,   2.2,   3.1,   4.4,   8.3,   9.9,  10. ,  14. ,  16.2])

#2


4  

There's probably a cool way to do this is numpy because numpy is magic to me, but:

这可能是一个很酷的方法,因为numpy对我来说是神奇的,但是:

x = np.array( [ num for num in x if num >= 0 ] )

#3


4  

If performance is important, you could take advantage of the fact that your np.array is sorted and use numpy.searchsorted

如果性能很重要,您可以利用np.array的排序并使用numpy.searchsorted

For example:

例如:

In [8]: x[np.searchsorted(x, 0) :]
Out[8]: array([  0. ,   1.2,   2.2,   3.1,   4.4,   8.3,   9.9,  10. ,  14. ,  16.2])

In [9]: %timeit x[np.searchsorted(x, 0) :]
1000000 loops, best of 3: 1.47 us per loop

In [10]: %timeit x[x >= 0]
100000 loops, best of 3: 4.5 us per loop

The difference in performance will increase as the size of the array increases because np.searchsorted does a binary search that is O(log n) vs. O(n) linear search that x >= 0 is doing.

随着数组大小的增加,性能的差异将会增加,因为np.searchsorted执行二进制搜索,即O(log n)与O(n)线性搜索x> = 0正在进行。

In [11]: x = np.arange(-1000, 1000)

In [12]: %timeit x[np.searchsorted(x, 0) :]
1000000 loops, best of 3: 1.61 us per loop

In [13]: %timeit x[x >= 0]
100000 loops, best of 3: 9.87 us per loop

#4


2  

In numpy:

在numpy:

b = array[array>=0]

Example:

例:

>>> import numpy as np
>>> arr = np.array([-2, -1.4, -1.1, 0, 1.2, 2.2, 3.1, 4.4, 8.3, 9.9, 10, 14, 16.2])
>>> arr = arr[arr>=0]
>>> arr
array([  0. ,   1.2,   2.2,   3.1,   4.4,   8.3,   9.9,  10. ,  14. ,  16.2])