This question already has an answer here:
这个问题已经有了答案:
- generate sequence by indices / one-hot encoding 4 answers
- 按索引/一热编码生成序列4个答案
Is there any bulid-in function in python/numpy to convert an array = [1, 3, 1, 2]
to something like this:
python/numpy中是否有插入函数将数组=[1,3,1,1,1,2]转换为如下形式:
array = [[0, 1, 0, 0],
[0, 0, 0, 1],
[0, 1, 0, 0],
[0, 0, 1, 0]]
2 个解决方案
#1
12
You can create an identity matrix and then use the indices to create a new re-ordered matrix:
您可以创建一个单位矩阵,然后使用索引创建一个新的重新排序的矩阵:
>>> a = np.eye(4)
[Out]: array([[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]])
>>> indices = [1, 3, 1, 2]
>>> a[indices]
[Out]: array([[0., 1., 0., 0.],
[0., 0., 0., 1.],
[0., 1., 0., 0.],
[0., 0., 1., 0.]])
#2
3
Probably the fastest would be to allocate zeros and then set the ones:
可能最快的方法是分配0,然后设置1:
>>> def f_preall(a):
... m, n = a.size, a.max()+1
... out = np.zeros((m, n))
... out[np.arange(m), a] = 1
... return out
...
>>> from timeit import timeit
>>>
>>> a = np.random.randint(0, 10, (10,))
>>> timeit(lambda: f_preall(a), number=10000)
0.04905537283048034
>>> timeit(lambda: np.eye(a.max()+1)[a], number=10000)
0.09359440207481384
>>>
>>> a = np.random.randint(0, 100, (100,))
>>> timeit(lambda: f_preall(a), number=10000)
0.10055362526327372
>>> timeit(lambda: np.eye(a.max()+1)[a], number=10000)
0.16951417503878474
#1
12
You can create an identity matrix and then use the indices to create a new re-ordered matrix:
您可以创建一个单位矩阵,然后使用索引创建一个新的重新排序的矩阵:
>>> a = np.eye(4)
[Out]: array([[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]])
>>> indices = [1, 3, 1, 2]
>>> a[indices]
[Out]: array([[0., 1., 0., 0.],
[0., 0., 0., 1.],
[0., 1., 0., 0.],
[0., 0., 1., 0.]])
#2
3
Probably the fastest would be to allocate zeros and then set the ones:
可能最快的方法是分配0,然后设置1:
>>> def f_preall(a):
... m, n = a.size, a.max()+1
... out = np.zeros((m, n))
... out[np.arange(m), a] = 1
... return out
...
>>> from timeit import timeit
>>>
>>> a = np.random.randint(0, 10, (10,))
>>> timeit(lambda: f_preall(a), number=10000)
0.04905537283048034
>>> timeit(lambda: np.eye(a.max()+1)[a], number=10000)
0.09359440207481384
>>>
>>> a = np.random.randint(0, 100, (100,))
>>> timeit(lambda: f_preall(a), number=10000)
0.10055362526327372
>>> timeit(lambda: np.eye(a.max()+1)[a], number=10000)
0.16951417503878474