Example Problem
As a simple example, consider the numpy array arr
as defined below:
作为一个简单的例子,考虑下面定义的numpy数组arr:
import numpy as np
arr = np.array([[5, np.nan, np.nan, 7, 2],
[3, np.nan, 1, 8, np.nan],
[4, 9, 6, np.nan, np.nan]])
where arr
looks like this in console output:
其中arr在控制台输出中是这样的:
array([[ 5., nan, nan, 7., 2.],
[ 3., nan, 1., 8., nan],
[ 4., 9., 6., nan, nan]])
I would now like to row-wise 'forward-fill' the nan
values in array arr
. By that I mean replacing each nan
value with the nearest valid value from the left. The desired result would look like this:
现在,我想以行方式“向前填充”数组arr中的nan值。我的意思是用左边最近的有效值替换每个nan值。期望的结果是这样的:
array([[ 5., 5., 5., 7., 2.],
[ 3., 3., 1., 8., 8.],
[ 4., 9., 6., 6., 6.]])
Tried thus far
I've tried using for-loops:
我试着使用for循环:
for row_idx in range(arr.shape[0]):
for col_idx in range(arr.shape[1]):
if np.isnan(arr[row_idx][col_idx]):
arr[row_idx][col_idx] = arr[row_idx][col_idx - 1]
I've also tried using a pandas dataframe as an intermediate step (since pandas dataframes have a very neat built-in method for forward-filling):
我还尝试过使用熊猫数据爆炸作为中间步骤(因为熊猫数据爆炸有一个非常整洁的内置方法来向前填充):
import pandas as pd
df = pd.DataFrame(arr)
df.fillna(method='ffill', axis=1, inplace=True)
arr = df.as_matrix()
Both of the above strategies produce the desired result, but I keep on wondering: wouldn't a strategy that uses only numpy vectorized operations be the most efficient one?
上述两种策略都产生了预期的结果,但我一直在想:一个只使用numpy矢量化操作的策略难道不是最有效的吗?
Summary
Is there another more efficient way to 'forward-fill' nan
values in numpy arrays? (e.g. by using numpy vectorized operations)
还有其他更有效的方法可以在numpy数组中“向前填充”nan值吗?(例如使用numpy矢量化操作)
Update: Solutions Comparison
I've tried to time all solutions thus far. This was my setup script:
到目前为止,我已经尝试了所有的解决方案。这是我的设置脚本:
import numba as nb
import numpy as np
import pandas as pd
def random_array():
choices = [1, 2, 3, 4, 5, 6, 7, 8, 9, np.nan]
out = np.random.choice(choices, size=(1000, 10))
return out
def loops_fill(arr):
out = arr.copy()
for row_idx in range(out.shape[0]):
for col_idx in range(1, out.shape[1]):
if np.isnan(out[row_idx, col_idx]):
out[row_idx, col_idx] = out[row_idx, col_idx - 1]
return out
@nb.jit
def numba_loops_fill(arr):
'''Numba decorator solution provided by shx2.'''
out = arr.copy()
for row_idx in range(out.shape[0]):
for col_idx in range(1, out.shape[1]):
if np.isnan(out[row_idx, col_idx]):
out[row_idx, col_idx] = out[row_idx, col_idx - 1]
return out
def pandas_fill(arr):
df = pd.DataFrame(arr)
df.fillna(method='ffill', axis=1, inplace=True)
out = df.as_matrix()
return out
def numpy_fill(arr):
'''Solution provided by Divakar.'''
mask = np.isnan(arr)
idx = np.where(~mask,np.arange(mask.shape[1]),0)
np.maximum.accumulate(idx,axis=1, out=idx)
out = arr[np.arange(idx.shape[0])[:,None], idx]
return out
followed by this console input:
下面是控制台输入:
%timeit -n 1000 loops_fill(random_array())
%timeit -n 1000 numba_loops_fill(random_array())
%timeit -n 1000 pandas_fill(random_array())
%timeit -n 1000 numpy_fill(random_array())
resulting in this console output:
产生此控制台输出:
1000 loops, best of 3: 9.64 ms per loop
1000 loops, best of 3: 377 µs per loop
1000 loops, best of 3: 455 µs per loop
1000 loops, best of 3: 351 µs per loop
2 个解决方案
#1
19
Here's one approach -
这是一种方法
mask = np.isnan(arr)
idx = np.where(~mask,np.arange(mask.shape[1]),0)
np.maximum.accumulate(idx,axis=1, out=idx)
out = arr[np.arange(idx.shape[0])[:,None], idx]
If you don't want to create another array and just fill the NaNs in arr
itself, replace the last step with this -
如果您不想创建另一个数组并只在arr中填充NaNs,那么用这个-替换最后一步
arr[mask] = arr[np.nonzero(mask)[0], idx[mask]]
Sample input, output -
样本的输入、输出
In [179]: arr
Out[179]:
array([[ 5., nan, nan, 7., 2., 6., 5.],
[ 3., nan, 1., 8., nan, 5., nan],
[ 4., 9., 6., nan, nan, nan, 7.]])
In [180]: out
Out[180]:
array([[ 5., 5., 5., 7., 2., 6., 5.],
[ 3., 3., 1., 8., 8., 5., 5.],
[ 4., 9., 6., 6., 6., 6., 7.]])
#2
3
Use Numba. This should give a significant speedup:
使用Numba。这将带来显著的加速:
import numba
@numba.jit
def loops_fill(arr):
...
#1
19
Here's one approach -
这是一种方法
mask = np.isnan(arr)
idx = np.where(~mask,np.arange(mask.shape[1]),0)
np.maximum.accumulate(idx,axis=1, out=idx)
out = arr[np.arange(idx.shape[0])[:,None], idx]
If you don't want to create another array and just fill the NaNs in arr
itself, replace the last step with this -
如果您不想创建另一个数组并只在arr中填充NaNs,那么用这个-替换最后一步
arr[mask] = arr[np.nonzero(mask)[0], idx[mask]]
Sample input, output -
样本的输入、输出
In [179]: arr
Out[179]:
array([[ 5., nan, nan, 7., 2., 6., 5.],
[ 3., nan, 1., 8., nan, 5., nan],
[ 4., 9., 6., nan, nan, nan, 7.]])
In [180]: out
Out[180]:
array([[ 5., 5., 5., 7., 2., 6., 5.],
[ 3., 3., 1., 8., 8., 5., 5.],
[ 4., 9., 6., 6., 6., 6., 7.]])
#2
3
Use Numba. This should give a significant speedup:
使用Numba。这将带来显著的加速:
import numba
@numba.jit
def loops_fill(arr):
...