Can I insert a column at a specific column index in pandas?
我可以在pandas中的特定列索引处插入列吗?
import pandas as pd
df = pd.DataFrame({'l':['a','b','c','d'], 'v':[1,2,1,2]})
df['n'] = 0
This will put column n
as the last column of df
, but isn't there a way to tell df
to put n
at the beginning?
这会将列n作为df的最后一列,但是有没有办法告诉df将n放在开头?
2 个解决方案
#1
183
see docs: http://pandas.pydata.org/pandas-docs/stable/dsintro.html#column-selection-addition-deletion
见文档:http://pandas.pydata.org/pandas-docs/stable/dsintro.html#column-selection-addition-deletion
using idx = 0 will insert at the beginning
使用idx = 0将在开头插入
df.insert(idx, col_name, value)
df = pd.DataFrame({'B': [1, 2, 3], 'C': [4, 5, 6]})
df
Out:
B C
0 1 4
1 2 5
2 3 6
idx = 0
new_col = [7, 8, 9] # can be a list, a Series, an array or a scalar
df.insert(loc=idx, column='A', value=new_col)
df
Out:
A B C
0 7 1 4
1 8 2 5
2 9 3 6
#2
6
You could try to extract columns as list, massage this as you want, and reindex your dataframe:
您可以尝试将列提取为列表,根据需要按下此按钮,然后重新索引数据框:
>>> cols = df.columns.tolist()
>>> cols = [cols[-1]]+cols[:-1] # or whatever change you need
>>> df.reindex(columns=cols)
n l v
0 0 a 1
1 0 b 2
2 0 c 1
3 0 d 2
EDIT: this can be done in one line ; however, this looks a bit ugly. Maybe some cleaner proposal may come...
编辑:这可以在一行中完成;然而,这看起来有点难看。也许一些更清洁的提案可能来......
>>> df.reindex(columns=['n']+df.columns[:-1].tolist())
n l v
0 0 a 1
1 0 b 2
2 0 c 1
3 0 d 2
#1
183
see docs: http://pandas.pydata.org/pandas-docs/stable/dsintro.html#column-selection-addition-deletion
见文档:http://pandas.pydata.org/pandas-docs/stable/dsintro.html#column-selection-addition-deletion
using idx = 0 will insert at the beginning
使用idx = 0将在开头插入
df.insert(idx, col_name, value)
df = pd.DataFrame({'B': [1, 2, 3], 'C': [4, 5, 6]})
df
Out:
B C
0 1 4
1 2 5
2 3 6
idx = 0
new_col = [7, 8, 9] # can be a list, a Series, an array or a scalar
df.insert(loc=idx, column='A', value=new_col)
df
Out:
A B C
0 7 1 4
1 8 2 5
2 9 3 6
#2
6
You could try to extract columns as list, massage this as you want, and reindex your dataframe:
您可以尝试将列提取为列表,根据需要按下此按钮,然后重新索引数据框:
>>> cols = df.columns.tolist()
>>> cols = [cols[-1]]+cols[:-1] # or whatever change you need
>>> df.reindex(columns=cols)
n l v
0 0 a 1
1 0 b 2
2 0 c 1
3 0 d 2
EDIT: this can be done in one line ; however, this looks a bit ugly. Maybe some cleaner proposal may come...
编辑:这可以在一行中完成;然而,这看起来有点难看。也许一些更清洁的提案可能来......
>>> df.reindex(columns=['n']+df.columns[:-1].tolist())
n l v
0 0 a 1
1 0 b 2
2 0 c 1
3 0 d 2