为什么导入numpy会在Linux上添加1 GB的虚拟内存?

时间:2022-07-08 21:21:41

I have to run python in a resource constrained environment with only a few GB of virtual memory. Worse yet, I have to fork children from my main process as part of application design, all of which receive a copy-on-write allocation of this same amount of virtual memory on fork. The result is that after forking only 1 - 2 children, the process group hits the ceiling and shuts everything down. Finally, I am not able to remove numpy as a dependency; it is a strict requirement.

我必须在资源受限的环境中运行python,只有几GB的虚拟内存。更糟糕的是,作为应用程序设计的一部分,我必须从我的主进程中派生孩子,所有这些都在fork上接收相同数量的虚拟内存的写时复制分配。结果是,在仅分配了1-2个孩子之后,过程组击中了天花板并关闭了所有东西。最后,我无法删除numpy作为依赖;这是一项严格的要求。

Any advice on how I can bring this initial memory allocation down?

关于如何降低初始内存分配的任何建议?

e.g.

  1. Change the default amount allocated to numpy on import?
  2. 导入时更改分配给numpy的默认金额?

  3. Disable the feature and force python / numpy to allocate more dynamically?
  4. 禁用该功能并强制python / numpy动态分配?


Details:

Red Hat Enterprise Linux Server release 6.9 (Santiago)
Python 3.6.2
numpy>=1.13.3

红帽企业Linux服务器版本6.9(圣地亚哥)Python 3.6.2 numpy> = 1.13.3

Bare Interpreter:

import os
os.system('cat "/proc/{}/status"'.format(os.getpid()))

# ... VmRSS: 7300 kB
# ... VmData: 4348 kB
# ... VmSize: 129160 kB

import numpy
os.system('cat "/proc/{}/status"'.format(os.getpid()))

# ... VmRSS: 21020 kB
# ... VmData: 1003220 kB
# ... VmSize: 1247088 kB  

1 个解决方案

#1


0  

Thank you, skullgoblet1089, for raising questions on SO and at https://github.com/numpy/numpy/issues/10455 , and for answering. Citing your 2018-01-24 post:

谢谢你,skullgoblet1089,提出关于SO和https://github.com/numpy/numpy/issues/10455的问题,并回答。引用你的2018-01-24帖子:

Reducing threads with export OMP_NUM_THREADS=4 will bring down VM allocation.

通过导出OMP_NUM_THREADS = 4减少线程将降低VM分配。

#1


0  

Thank you, skullgoblet1089, for raising questions on SO and at https://github.com/numpy/numpy/issues/10455 , and for answering. Citing your 2018-01-24 post:

谢谢你,skullgoblet1089,提出关于SO和https://github.com/numpy/numpy/issues/10455的问题,并回答。引用你的2018-01-24帖子:

Reducing threads with export OMP_NUM_THREADS=4 will bring down VM allocation.

通过导出OMP_NUM_THREADS = 4减少线程将降低VM分配。