I'm trying to transform each element of a numpy array into an array itself (say, to interpret a greyscale image as a color image). In other words:
我正在尝试将numpy数组的每个元素转换为数组本身(例如,将灰度图像解释为彩色图像)。换一种说法:
>>> my_ar = numpy.array((0,5,10))
[0, 5, 10]
>>> transformed = my_fun(my_ar) # In reality, my_fun() would do something more useful
array([
[ 0, 0, 0],
[ 5, 10, 15],
[10, 20, 30]])
>>> transformed.shape
(3, 3)
I've tried:
def my_fun_e(val):
return numpy.array((val, val*2, val*3))
my_fun = numpy.frompyfunc(my_fun_e, 1, 3)
but get:
my_fun(my_ar)
(array([[0 0 0], [ 5 10 15], [10 20 30]], dtype=object), array([None, None, None], dtype=object), array([None, None, None], dtype=object))
and I've tried:
我试过了:
my_fun = numpy.frompyfunc(my_fun_e, 1, 1)
but get:
>>> my_fun(my_ar)
array([[0 0 0], [ 5 10 15], [10 20 30]], dtype=object)
This is close, but not quite right -- I get an array of objects, not an array of ints.
这很接近,但不是很正确 - 我得到一个对象数组,而不是一个int数组。
Update 3! OK. I've realized that my example was too simple beforehand -- I don't just want to replicate my data in a third dimension, I'd like to transform it at the same time. Maybe this is clearer?
更新3!好。我已经意识到我的例子事先太简单了 - 我不只是想在第三维复制我的数据,我想同时转换它。也许这更清楚了?
4 个解决方案
#1
2
Use map to apply your transformation function to each element in my_ar:
使用map将转换函数应用于my_ar中的每个元素:
import numpy
my_ar = numpy.array((0,5,10))
print my_ar
transformed = numpy.array(map(lambda x:numpy.array((x,x*2,x*3)), my_ar))
print transformed
print transformed.shape
#2
7
Does numpy.dstack do what you want? The first two indexes are the same as the original array, and the new third index is "depth".
numpy.dstack能做你想要的吗?前两个索引与原始数组相同,新的第三个索引是“深度”。
>>> import numpy as N
>>> a = N.array([[1,2,3],[4,5,6],[7,8,9]])
>>> a
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
>>> b = N.dstack((a,a,a))
>>> b
array([[[1, 1, 1],
[2, 2, 2],
[3, 3, 3]],
[[4, 4, 4],
[5, 5, 5],
[6, 6, 6]],
[[7, 7, 7],
[8, 8, 8],
[9, 9, 9]]])
>>> b[1,1]
array([5, 5, 5])
#3
1
I propose:
numpy.resize(my_ar, (3,3)).transpose()
You can of course adapt the shape (my_ar.shape[0],)*2
or whatever
您当然可以调整形状(my_ar.shape [0],)* 2等等
#4
1
Does this do what you want:
这样做你想要的:
tile(my_ar, (1,1,3))
#1
2
Use map to apply your transformation function to each element in my_ar:
使用map将转换函数应用于my_ar中的每个元素:
import numpy
my_ar = numpy.array((0,5,10))
print my_ar
transformed = numpy.array(map(lambda x:numpy.array((x,x*2,x*3)), my_ar))
print transformed
print transformed.shape
#2
7
Does numpy.dstack do what you want? The first two indexes are the same as the original array, and the new third index is "depth".
numpy.dstack能做你想要的吗?前两个索引与原始数组相同,新的第三个索引是“深度”。
>>> import numpy as N
>>> a = N.array([[1,2,3],[4,5,6],[7,8,9]])
>>> a
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
>>> b = N.dstack((a,a,a))
>>> b
array([[[1, 1, 1],
[2, 2, 2],
[3, 3, 3]],
[[4, 4, 4],
[5, 5, 5],
[6, 6, 6]],
[[7, 7, 7],
[8, 8, 8],
[9, 9, 9]]])
>>> b[1,1]
array([5, 5, 5])
#3
1
I propose:
numpy.resize(my_ar, (3,3)).transpose()
You can of course adapt the shape (my_ar.shape[0],)*2
or whatever
您当然可以调整形状(my_ar.shape [0],)* 2等等
#4
1
Does this do what you want:
这样做你想要的:
tile(my_ar, (1,1,3))