I have a pandas DataFrame
like following.
我有一个像下面这样的pandas DataFrame。
df = pd.DataFrame({'id' : [1,1,1,2,2,3,3,3,3,4,4,5,6,6,6,7,7],
'value' : ["first","second","second","first",
"second","first","third","fourth",
"fifth","second","fifth","first",
"first","second","third","fourth","fifth"]})
I want to group this by ["id","value"] and get the first row of each group.
我想通过[“id”,“value”]对此进行分组,并得到每个组的第一行。
id value
0 1 first
1 1 second
2 1 second
3 2 first
4 2 second
5 3 first
6 3 third
7 3 fourth
8 3 fifth
9 4 second
10 4 fifth
11 5 first
12 6 first
13 6 second
14 6 third
15 7 fourth
16 7 fifth
Expected outcome
预期结果
id value
1 first
2 first
3 first
4 second
5 first
6 first
7 fourth
I tried following which only gives the first row of the DataFrame
. Any help regarding this is appreciated.
我试过以下只给出了DataFrame的第一行。对此有任何帮助表示赞赏。
In [25]: for index, row in df.iterrows():
....: df2 = pd.DataFrame(df.groupby(['id','value']).reset_index().ix[0])
4 个解决方案
#1
128
>>> df.groupby('id').first()
value
id
1 first
2 first
3 first
4 second
5 first
6 first
7 fourth
If you need id
as column:
如果您需要id作为列:
>>> df.groupby('id').first().reset_index()
id value
0 1 first
1 2 first
2 3 first
3 4 second
4 5 first
5 6 first
6 7 fourth
To get n first records, you can use head():
要获得n个第一个记录,可以使用head():
>>> df.groupby('id').head(2).reset_index(drop=True)
id value
0 1 first
1 1 second
2 2 first
3 2 second
4 3 first
5 3 third
6 4 second
7 4 fifth
8 5 first
9 6 first
10 6 second
11 7 fourth
12 7 fifth
#2
29
This will give you the second row of each group (zero indexed, nth(0) is the same as first()):
这将为您提供每组的第二行(零索引,nth(0)与first()相同):
df.groupby('id').nth(1)
Documentation: http://pandas.pydata.org/pandas-docs/stable/groupby.html#taking-the-nth-row-of-each-group
文档:http://pandas.pydata.org/pandas-docs/stable/groupby.html#taking-the-nth-row-of-each-group
#3
5
I'd suggest to use .nth(0)
rather than .first()
if you need to get the first row.
如果你需要获得第一行,我建议使用.nth(0)而不是.first()。
The difference between them is how they handle NaNs, so .nth(0)
will return the first row of group no matter what are the values in this row, while .first()
will eventually return the first not NaN
values in each column.
它们之间的区别在于它们如何处理NaN,因此.nth(0)将返回组的第一行,无论该行中的值是什么,而.first()最终将返回每列中的第一个非NaN值。
E.g. if your dataset is :
例如。如果您的数据集是:
df = pd.DataFrame({'id' : [1,1,1,2,2,3,3,3,3,4,4],
'value' : ["first","second","third", np.NaN,
"second","first","second","third",
"fourth","first","second"]})
>>> df.groupby('id').nth(0)
value
id
1 first
2 NaN
3 first
4 first
And
和
>>> df.groupby('id').first()
value
id
1 first
2 second
3 first
4 first
#4
4
maybe this is what you want
也许这就是你想要的
import pandas as pd
idx = pd.MultiIndex.from_product([['state1','state2'], ['county1','county2','county3','county4']])
df = pd.DataFrame({'pop': [12,15,65,42,78,67,55,31]}, index=idx)
pop state1 county1 12 county2 15 county3 65 county4 42 state2 county1 78 county2 67 county3 55 county4 31
df.groupby(level=0, group_keys=False).apply(lambda x: x.sort_values('pop', ascending=False)).groupby(level=0).head(3)
> Out[29]:
pop
state1 county3 65
county4 42
county2 15
state2 county1 78
county2 67
county3 55
#1
128
>>> df.groupby('id').first()
value
id
1 first
2 first
3 first
4 second
5 first
6 first
7 fourth
If you need id
as column:
如果您需要id作为列:
>>> df.groupby('id').first().reset_index()
id value
0 1 first
1 2 first
2 3 first
3 4 second
4 5 first
5 6 first
6 7 fourth
To get n first records, you can use head():
要获得n个第一个记录,可以使用head():
>>> df.groupby('id').head(2).reset_index(drop=True)
id value
0 1 first
1 1 second
2 2 first
3 2 second
4 3 first
5 3 third
6 4 second
7 4 fifth
8 5 first
9 6 first
10 6 second
11 7 fourth
12 7 fifth
#2
29
This will give you the second row of each group (zero indexed, nth(0) is the same as first()):
这将为您提供每组的第二行(零索引,nth(0)与first()相同):
df.groupby('id').nth(1)
Documentation: http://pandas.pydata.org/pandas-docs/stable/groupby.html#taking-the-nth-row-of-each-group
文档:http://pandas.pydata.org/pandas-docs/stable/groupby.html#taking-the-nth-row-of-each-group
#3
5
I'd suggest to use .nth(0)
rather than .first()
if you need to get the first row.
如果你需要获得第一行,我建议使用.nth(0)而不是.first()。
The difference between them is how they handle NaNs, so .nth(0)
will return the first row of group no matter what are the values in this row, while .first()
will eventually return the first not NaN
values in each column.
它们之间的区别在于它们如何处理NaN,因此.nth(0)将返回组的第一行,无论该行中的值是什么,而.first()最终将返回每列中的第一个非NaN值。
E.g. if your dataset is :
例如。如果您的数据集是:
df = pd.DataFrame({'id' : [1,1,1,2,2,3,3,3,3,4,4],
'value' : ["first","second","third", np.NaN,
"second","first","second","third",
"fourth","first","second"]})
>>> df.groupby('id').nth(0)
value
id
1 first
2 NaN
3 first
4 first
And
和
>>> df.groupby('id').first()
value
id
1 first
2 second
3 first
4 first
#4
4
maybe this is what you want
也许这就是你想要的
import pandas as pd
idx = pd.MultiIndex.from_product([['state1','state2'], ['county1','county2','county3','county4']])
df = pd.DataFrame({'pop': [12,15,65,42,78,67,55,31]}, index=idx)
pop state1 county1 12 county2 15 county3 65 county4 42 state2 county1 78 county2 67 county3 55 county4 31
df.groupby(level=0, group_keys=False).apply(lambda x: x.sort_values('pop', ascending=False)).groupby(level=0).head(3)
> Out[29]:
pop
state1 county3 65
county4 42
county2 15
state2 county1 78
county2 67
county3 55