从稀疏的剪刀状矩阵中填充熊猫SparseDataFrame

时间:2021-03-03 21:24:40

I noticed Pandas now has support for Sparse Matrices and Arrays. Currently, I create DataFrame()s like this:

我注意到熊猫现在支持稀疏矩阵和数组。目前,我创建DataFrame()如下:

return DataFrame(matrix.toarray(), columns=features, index=observations)

Is there a way to create a SparseDataFrame() with a scipy.sparse.csc_matrix() or csr_matrix()? Converting to dense format kills RAM badly. Thanks!

是否有一种方法可以使用scipy.sparse.csc_matrix()或csr_matrix()创建SparseDataFrame() ?转换成密集格式严重地破坏了RAM。谢谢!

3 个解决方案

#1


25  

A direct conversion is not supported ATM. Contributions are welcome!

不支持直接转换ATM。贡献是受欢迎的!

Try this, should be ok on memory as the SpareSeries is much like a csc_matrix (for 1 column) and pretty space efficient

试试这个,内存上应该没问题,因为备件很像一个csc_matrix(针对一列),而且空间效率很高

In [37]: col = np.array([0,0,1,2,2,2])

In [38]: data = np.array([1,2,3,4,5,6],dtype='float64')

In [39]: m = csc_matrix( (data,(row,col)), shape=(3,3) )

In [40]: m
Out[40]: 
<3x3 sparse matrix of type '<type 'numpy.float64'>'
        with 6 stored elements in Compressed Sparse Column format>

In [46]: pd.SparseDataFrame([ pd.SparseSeries(m[i].toarray().ravel()) 
                              for i in np.arange(m.shape[0]) ])
Out[46]: 
   0  1  2
0  1  0  4
1  0  0  5
2  2  3  6

In [47]: df = pd.SparseDataFrame([ pd.SparseSeries(m[i].toarray().ravel()) 
                                   for i in np.arange(m.shape[0]) ])

In [48]: type(df)
Out[48]: pandas.sparse.frame.SparseDataFrame

#2


11  

As of pandas v 0.20.0 you can use the SparseDataFrame constructor.

对于panda v 0.20.0,您可以使用SparseDataFrame构造函数。

An example from the pandas docs:

熊猫医生的一个例子:

import numpy as np
import pandas as pd
from scipy.sparse import csr_matrix

arr = np.random.random(size=(1000, 5))
arr[arr < .9] = 0
sp_arr = csr_matrix(arr)
sdf = pd.SparseDataFrame(sp_arr)

#3


-10  

A much shorter version:

更短的版本:

df = pd.DataFrame(m.toarray())

#1


25  

A direct conversion is not supported ATM. Contributions are welcome!

不支持直接转换ATM。贡献是受欢迎的!

Try this, should be ok on memory as the SpareSeries is much like a csc_matrix (for 1 column) and pretty space efficient

试试这个,内存上应该没问题,因为备件很像一个csc_matrix(针对一列),而且空间效率很高

In [37]: col = np.array([0,0,1,2,2,2])

In [38]: data = np.array([1,2,3,4,5,6],dtype='float64')

In [39]: m = csc_matrix( (data,(row,col)), shape=(3,3) )

In [40]: m
Out[40]: 
<3x3 sparse matrix of type '<type 'numpy.float64'>'
        with 6 stored elements in Compressed Sparse Column format>

In [46]: pd.SparseDataFrame([ pd.SparseSeries(m[i].toarray().ravel()) 
                              for i in np.arange(m.shape[0]) ])
Out[46]: 
   0  1  2
0  1  0  4
1  0  0  5
2  2  3  6

In [47]: df = pd.SparseDataFrame([ pd.SparseSeries(m[i].toarray().ravel()) 
                                   for i in np.arange(m.shape[0]) ])

In [48]: type(df)
Out[48]: pandas.sparse.frame.SparseDataFrame

#2


11  

As of pandas v 0.20.0 you can use the SparseDataFrame constructor.

对于panda v 0.20.0,您可以使用SparseDataFrame构造函数。

An example from the pandas docs:

熊猫医生的一个例子:

import numpy as np
import pandas as pd
from scipy.sparse import csr_matrix

arr = np.random.random(size=(1000, 5))
arr[arr < .9] = 0
sp_arr = csr_matrix(arr)
sdf = pd.SparseDataFrame(sp_arr)

#3


-10  

A much shorter version:

更短的版本:

df = pd.DataFrame(m.toarray())