为NumPy数组赋值

时间:2021-06-06 21:20:00

Can someone explain to me why attempt #1 does not work?

有人能向我解释为什么尝试1不起作用吗?

import numpy as np    
x = np.zeros(1, dtype=np.dtype([('field', '<f8', (1,2))]))

Attempt #1:

尝试# 1:

x[0]['field'] = np.array([3.,4.], dtype=np.double)
print x, '\n'

[([[ 3. 0.]])] (why was only the '3' copied over?)

[([[3。(为什么只有'3'才被抄送过来?)

Attempt #2:

尝试# 2:

x['field'][0] = np.array([3.,4.], dtype=np.double)
print x

[([[ 3. 4.]])] (this worked)

[([[3。4。]])](工作)

2 个解决方案

#1


2  

To be honest... I'm not sure I'm getting the results either. It seems inconsistent/broken. Part of it is due to inconsistent shapes but not all of it. Some data seems to be disappearing.

老实说……我也不确定我是否得到了结果。似乎不一致/坏了。部分原因是形状不一致,但不是全部。一些数据似乎正在消失。

For example (note the shapes):

例如(注意形状):

In [1]: import numpy as np

In [2]: x = np.zeros(1, dtype=np.dtype([('field', '<f8', (1, 2))]))

In [3]: y = x[0]['field'].copy()

In [4]: y[0] = 3

In [5]: y[1] = 4
---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
<ipython-input-5-cba72439f97c> in <module>()
----> 1 y[1] = 4

IndexError: index 1 is out of bounds for axis 0 with size 1

In [6]: y[0][1] = 4

In [7]: x
Out[7]:
array([([[0.0, 0.0]],)],
      dtype=[('field', '<f8', (1, 2))])

In [8]: y
Out[8]: array([[ 3.,  4.]])

In [9]: x[0]['field'] = y

In [10]: x
Out[10]:
array([([[3.0, 0.0]],)],
      dtype=[('field', '<f8', (1, 2))])

So... to make it easier to grasp, let's make the shape simpler.

所以…为了让它更容易掌握,让我们让形状更简单。

In [1]: import numpy as np

In [2]: x = np.zeros(1, dtype=np.dtype([('field', '<f8', 2)]))

In [3]: y = x[0]['field'].copy()

In [4]: y[0] = 3

In [5]: y[1] = 4

In [6]: x[0]['field'] = y

In [7]: x
Out[7]:
array([([3.0, 0.0],)],
      dtype=[('field', '<f8', (2,))])

In [8]: y
Out[8]: array([ 3.,  4.])

Where the data is going in this case... not a clue. Assigning in a way that the data does get stored seems easily possible though.

在这种情况下数据的去向……不是一个线索。以数据存储的方式进行分配似乎很容易。

Several options:

几个选项:

In [9]: x['field'][0] = y

In [10]: x
Out[10]:
array([([3.0, 4.0],)],
      dtype=[('field', '<f8', (2,))])

In [11]: x['field'] = y * 2

In [12]: x
Out[12]:
array([([6.0, 8.0],)],
      dtype=[('field', '<f8', (2,))])

In [13]: x['field'][:] = y

In [14]: x
Out[14]:
array([([3.0, 4.0],)],
      dtype=[('field', '<f8', (2,))])

In [15]: x[0]['field'][:] = y * 2

In [16]: x
Out[16]:
array([([6.0, 8.0],)],
      dtype=[('field', '<f8', (2,))])

#2


2  

It appears to be a recognized bug in Numpy. There is discussion there of possible fixes, but the bug is still open.

它在Numpy中似乎是一个可识别的错误。有人在讨论可能的修复,但是这个bug仍然是开放的。

#1


2  

To be honest... I'm not sure I'm getting the results either. It seems inconsistent/broken. Part of it is due to inconsistent shapes but not all of it. Some data seems to be disappearing.

老实说……我也不确定我是否得到了结果。似乎不一致/坏了。部分原因是形状不一致,但不是全部。一些数据似乎正在消失。

For example (note the shapes):

例如(注意形状):

In [1]: import numpy as np

In [2]: x = np.zeros(1, dtype=np.dtype([('field', '<f8', (1, 2))]))

In [3]: y = x[0]['field'].copy()

In [4]: y[0] = 3

In [5]: y[1] = 4
---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
<ipython-input-5-cba72439f97c> in <module>()
----> 1 y[1] = 4

IndexError: index 1 is out of bounds for axis 0 with size 1

In [6]: y[0][1] = 4

In [7]: x
Out[7]:
array([([[0.0, 0.0]],)],
      dtype=[('field', '<f8', (1, 2))])

In [8]: y
Out[8]: array([[ 3.,  4.]])

In [9]: x[0]['field'] = y

In [10]: x
Out[10]:
array([([[3.0, 0.0]],)],
      dtype=[('field', '<f8', (1, 2))])

So... to make it easier to grasp, let's make the shape simpler.

所以…为了让它更容易掌握,让我们让形状更简单。

In [1]: import numpy as np

In [2]: x = np.zeros(1, dtype=np.dtype([('field', '<f8', 2)]))

In [3]: y = x[0]['field'].copy()

In [4]: y[0] = 3

In [5]: y[1] = 4

In [6]: x[0]['field'] = y

In [7]: x
Out[7]:
array([([3.0, 0.0],)],
      dtype=[('field', '<f8', (2,))])

In [8]: y
Out[8]: array([ 3.,  4.])

Where the data is going in this case... not a clue. Assigning in a way that the data does get stored seems easily possible though.

在这种情况下数据的去向……不是一个线索。以数据存储的方式进行分配似乎很容易。

Several options:

几个选项:

In [9]: x['field'][0] = y

In [10]: x
Out[10]:
array([([3.0, 4.0],)],
      dtype=[('field', '<f8', (2,))])

In [11]: x['field'] = y * 2

In [12]: x
Out[12]:
array([([6.0, 8.0],)],
      dtype=[('field', '<f8', (2,))])

In [13]: x['field'][:] = y

In [14]: x
Out[14]:
array([([3.0, 4.0],)],
      dtype=[('field', '<f8', (2,))])

In [15]: x[0]['field'][:] = y * 2

In [16]: x
Out[16]:
array([([6.0, 8.0],)],
      dtype=[('field', '<f8', (2,))])

#2


2  

It appears to be a recognized bug in Numpy. There is discussion there of possible fixes, but the bug is still open.

它在Numpy中似乎是一个可识别的错误。有人在讨论可能的修复,但是这个bug仍然是开放的。