I have a numpy array which I want to print with python ggplot's tile. For that I need to have a DataFrame with the columns x, y, value. How can I transform the numpy array efficiently into such a DataFrame. Please consider, that the form of the data I want is in a sparse style, but I want a regular DataFrame. I tried using scipy sparse data structures like in Convert sparse matrix (csc_matrix) to pandas dataframe, but conversions were too slow and memory hungry: My memory was used up.
我有一个numpy数组,我想用python ggplot的tile打印。为此,我需要一个包含x,y,value列的DataFrame。如何将numpy数组有效地转换为这样的DataFrame。请考虑,我想要的数据形式是稀疏样式,但我想要一个常规的DataFrame。我尝试使用scipy稀疏数据结构,如转换稀疏矩阵(csc_matrix)到pandas数据帧,但转换太慢而且内存耗尽:我的内存已用完。
To clarify what I want:
澄清我想要的东西:
I start out with a numpy array like
我从一个像numpy数组开始
array([[ 1, 3, 7],
[ 4, 9, 8]])
and I would like to end up with the DataFrame
我想最终得到DataFrame
x y value
0 0 0 1
1 0 1 3
2 0 2 7
3 1 0 4
4 1 1 9
5 1 2 8
1 个解决方案
#1
1
arr = np.array([[1, 3, 7],
[4, 9, 8]])
df = pd.DataFrame(np.hstack((np.indices(arr.shape).reshape(2, arr.size).T,\
arr.reshape(-1, 1))), columns=['x', 'y', 'value'])
print(df)
x y value
0 0 0 1
1 0 1 3
2 0 2 7
3 1 0 4
4 1 1 9
5 1 2 8
You might also consider using the function employed in this answer, as a speedup to np.indices
in the solution above:
您也可以考虑使用本答案中使用的函数,作为上述解决方案中np.indices的加速:
def indices_merged_arr(arr):
m,n = arr.shape
I,J = np.ogrid[:m,:n]
out = np.empty((m,n,3), dtype=arr.dtype)
out[...,0] = I
out[...,1] = J
out[...,2] = arr
out.shape = (-1,3)
return out
array = np.array([[ 1, 3, 7],
[ 4, 9, 8]])
df = pd.DataFrame(indices_merged_arr(array), columns=['x', 'y', 'value'])
print(df)
x y value
0 0 0 1
1 0 1 3
2 0 2 7
3 1 0 4
4 1 1 9
5 1 2 8
Performance
arr = np.random.randn(1000, 1000)
%timeit df = pd.DataFrame(np.hstack((np.indices(arr.shape).reshape(2, arr.size).T,\
arr.reshape(-1, 1))), columns=['x', 'y', 'value'])
100 loops, best of 3: 15.3 ms per loop
%timeit pd.DataFrame(indices_merged_arr(array), columns=['x', 'y', 'value'])
1000 loops, best of 3: 229 µs per loop
#1
1
arr = np.array([[1, 3, 7],
[4, 9, 8]])
df = pd.DataFrame(np.hstack((np.indices(arr.shape).reshape(2, arr.size).T,\
arr.reshape(-1, 1))), columns=['x', 'y', 'value'])
print(df)
x y value
0 0 0 1
1 0 1 3
2 0 2 7
3 1 0 4
4 1 1 9
5 1 2 8
You might also consider using the function employed in this answer, as a speedup to np.indices
in the solution above:
您也可以考虑使用本答案中使用的函数,作为上述解决方案中np.indices的加速:
def indices_merged_arr(arr):
m,n = arr.shape
I,J = np.ogrid[:m,:n]
out = np.empty((m,n,3), dtype=arr.dtype)
out[...,0] = I
out[...,1] = J
out[...,2] = arr
out.shape = (-1,3)
return out
array = np.array([[ 1, 3, 7],
[ 4, 9, 8]])
df = pd.DataFrame(indices_merged_arr(array), columns=['x', 'y', 'value'])
print(df)
x y value
0 0 0 1
1 0 1 3
2 0 2 7
3 1 0 4
4 1 1 9
5 1 2 8
Performance
arr = np.random.randn(1000, 1000)
%timeit df = pd.DataFrame(np.hstack((np.indices(arr.shape).reshape(2, arr.size).T,\
arr.reshape(-1, 1))), columns=['x', 'y', 'value'])
100 loops, best of 3: 15.3 ms per loop
%timeit pd.DataFrame(indices_merged_arr(array), columns=['x', 'y', 'value'])
1000 loops, best of 3: 229 µs per loop