Here is my prime factorization program,i added a callback function in pool.apply_async(findK, args=(N,begin,end))
,a message prompt out prime factorization is over
when factorization is over,it works fine.
这是我的主要分解程序,我在pool.apply_async中添加了一个回调函数(findK,args =(N,begin,end)),当分解结束时,一个消息提示出素数因子分解结束,它工作正常。
import math
import multiprocessing
def findK(N,begin,end):
for k in range(begin,end):
if N% k == 0:
print(N,"=" ,k ,"*", N/k)
return True
return False
def prompt(result):
if result:
print("prime factorization is over")
def mainFun(N,process_num):
pool = multiprocessing.Pool(process_num)
for i in range(process_num):
if i ==0 :
begin =2
else:
begin = int(math.sqrt(N)/process_num*i)+1
end = int(math.sqrt(N)/process_num*(i+1))
pool.apply_async(findK, args=(N,begin,end) , callback = prompt)
pool.close()
pool.join()
if __name__ == "__main__":
N = 684568031001583853
process_num = 16
mainFun(N,process_num)
Now i want to change the callback function in apply_async,to change prompt into a shutdown function to kill all other process.
现在我想更改apply_async中的回调函数,将提示更改为关闭函数以终止所有其他进程。
def prompt(result):
if result:
pool.terminate()
The pool instance is not defined in prompt scope or passed into prompt.pool.terminate()
can't work in prompt function.
How to pass multiprocessing.Pool instance to apply_async'callback function ?
(I have made it done in class format,just to add a class method and call self.pool.terminate can kill all other process, how to do the job in function format?)
池实例未在提示范围中定义或传递到提示中。 pool.terminate()无法在提示函数中工作。如何将multiprocessing.Pool实例传递给apply_async'callback函数? (我已经用类格式完成了,只是添加一个类方法并调用self.pool.terminate可以杀死所有其他进程,如何以函数格式完成工作?)
if not set pool as global variable, can pool be passed into callback function?
如果没有将pool设置为全局变量,可以将池传递给回调函数吗?
3 个解决方案
#1
8
Passing extra arguments to the callback function is not supported. Yet you have plenty of elegant ways to workaround that.
不支持将额外参数传递给回调函数。然而,你有很多优雅的方法来解决这个问题。
You can encapsulate your pool logic into an object:
您可以将池逻辑封装到对象中:
class Executor:
def __init__(self, process_num):
self.pool = multiprocessing.Pool(process_num)
def prompt(self, result):
if result:
print("prime factorization is over")
self.pool.terminate()
def schedule(self, function, args):
self.pool.apply_async(function, args=args, callback=self.prompt)
def wait(self):
self.pool.close()
self.pool.join()
def main(N,process_num):
executor = Executor(process_num)
for i in range(process_num):
...
executor.schedule(findK, (N,begin,end))
executor.wait()
Or you can use the concurrent.futures.Executor implementation which returns a Future
object. You just append the pool to the Future
object before setting the callback.
或者您可以使用concurrent.futures.Executor实现,该实现返回Future对象。您只需在设置回调之前将池附加到Future对象。
def prompt(future):
if future.result():
print("prime factorization is over")
future.pool_executor.shutdown(wait=False)
def main(N,process_num):
executor = concurrent.futures.ProcessPoolExecutor(max_workers=process_num)
for i in range(process_num):
...
future = executor.submit(findK, N,begin,end)
future.pool_executor = executor
future.add_done_callback(prompt)
#2
4
You need to have pool
end up in prompt
's environment. One possibility is to move pool
into the global scope (though this isn't really best-practice). This appears to work:
您需要在提示环境中使用池。一种可能性是将池转移到全球范围(尽管这不是最佳实践)。这似乎有效:
import math
import multiprocessing
pool = None
def findK(N,begin,end):
for k in range(begin,end):
if N% k == 0:
print(N,"=" ,k ,"*", N/k)
return True
return False
def prompt(result):
if result:
print("prime factorization is over")
pool.terminate()
def mainFun(N,process_num):
global pool
pool = multiprocessing.Pool(process_num)
for i in range(process_num):
if i ==0 :
begin =2
else:
begin = int(math.sqrt(N)/process_num*i)+1
end = int(math.sqrt(N)/process_num*(i+1))
pool.apply_async(findK, args=(N,begin,end) , callback = prompt)
pool.close()
pool.join()
if __name__ == "__main__":
N = 684568031001583853
process_num = 16
mainFun(N,process_num)
#3
4
You can simply define a local close
function as a callback:
您可以简单地将本地关闭函数定义为回调:
import math
import multiprocessing
def findK(N, begin, end):
for k in range(begin, end):
if N % k == 0:
print(N, "=", k, "*", N / k)
return True
return False
def mainFun(N, process_num):
pool = multiprocessing.Pool(process_num)
def close(result):
if result:
print("prime factorization is over")
pool.terminate()
for i in range(process_num):
if i == 0:
begin = 2
else:
begin = int(math.sqrt(N) / process_num * i) + 1
end = int(math.sqrt(N) / process_num * (i + 1))
pool.apply_async(findK, args=(N, begin, end), callback=close)
pool.close()
pool.join()
if __name__ == "__main__":
N = 684568031001583853
process_num = 16
mainFun(N, process_num)
You can also use a partial
function from functool
, with
你也可以使用functool的部分功能
import functools
def close_pool(pool, results):
if result:
pool.terminate()
def mainFun(N, process_num):
pool = multiprocessing.Pool(process_num)
close = funtools.partial(close_pool, pool)
....
#1
8
Passing extra arguments to the callback function is not supported. Yet you have plenty of elegant ways to workaround that.
不支持将额外参数传递给回调函数。然而,你有很多优雅的方法来解决这个问题。
You can encapsulate your pool logic into an object:
您可以将池逻辑封装到对象中:
class Executor:
def __init__(self, process_num):
self.pool = multiprocessing.Pool(process_num)
def prompt(self, result):
if result:
print("prime factorization is over")
self.pool.terminate()
def schedule(self, function, args):
self.pool.apply_async(function, args=args, callback=self.prompt)
def wait(self):
self.pool.close()
self.pool.join()
def main(N,process_num):
executor = Executor(process_num)
for i in range(process_num):
...
executor.schedule(findK, (N,begin,end))
executor.wait()
Or you can use the concurrent.futures.Executor implementation which returns a Future
object. You just append the pool to the Future
object before setting the callback.
或者您可以使用concurrent.futures.Executor实现,该实现返回Future对象。您只需在设置回调之前将池附加到Future对象。
def prompt(future):
if future.result():
print("prime factorization is over")
future.pool_executor.shutdown(wait=False)
def main(N,process_num):
executor = concurrent.futures.ProcessPoolExecutor(max_workers=process_num)
for i in range(process_num):
...
future = executor.submit(findK, N,begin,end)
future.pool_executor = executor
future.add_done_callback(prompt)
#2
4
You need to have pool
end up in prompt
's environment. One possibility is to move pool
into the global scope (though this isn't really best-practice). This appears to work:
您需要在提示环境中使用池。一种可能性是将池转移到全球范围(尽管这不是最佳实践)。这似乎有效:
import math
import multiprocessing
pool = None
def findK(N,begin,end):
for k in range(begin,end):
if N% k == 0:
print(N,"=" ,k ,"*", N/k)
return True
return False
def prompt(result):
if result:
print("prime factorization is over")
pool.terminate()
def mainFun(N,process_num):
global pool
pool = multiprocessing.Pool(process_num)
for i in range(process_num):
if i ==0 :
begin =2
else:
begin = int(math.sqrt(N)/process_num*i)+1
end = int(math.sqrt(N)/process_num*(i+1))
pool.apply_async(findK, args=(N,begin,end) , callback = prompt)
pool.close()
pool.join()
if __name__ == "__main__":
N = 684568031001583853
process_num = 16
mainFun(N,process_num)
#3
4
You can simply define a local close
function as a callback:
您可以简单地将本地关闭函数定义为回调:
import math
import multiprocessing
def findK(N, begin, end):
for k in range(begin, end):
if N % k == 0:
print(N, "=", k, "*", N / k)
return True
return False
def mainFun(N, process_num):
pool = multiprocessing.Pool(process_num)
def close(result):
if result:
print("prime factorization is over")
pool.terminate()
for i in range(process_num):
if i == 0:
begin = 2
else:
begin = int(math.sqrt(N) / process_num * i) + 1
end = int(math.sqrt(N) / process_num * (i + 1))
pool.apply_async(findK, args=(N, begin, end), callback=close)
pool.close()
pool.join()
if __name__ == "__main__":
N = 684568031001583853
process_num = 16
mainFun(N, process_num)
You can also use a partial
function from functool
, with
你也可以使用functool的部分功能
import functools
def close_pool(pool, results):
if result:
pool.terminate()
def mainFun(N, process_num):
pool = multiprocessing.Pool(process_num)
close = funtools.partial(close_pool, pool)
....