思路:共有n-1条边连接n个点,即形成一棵树。一开始需要选择一个点hack--将这个点视为根结点,与它相邻的点防御值加1,与它相隔一个在线点的点的防御也加1。当根节点被hack,即这个点被删除,又变成多棵树。此时,Inzane只有一种选择,因为题目规定“Bank
x is neighboring to some
offline bank.”,即选完第一个点,接下来他只能选择剩下的数的根结点,每个节点的防御值都变得有规律可循--假设把根结点看做第一层,那么第二层的防御值都会加一,其它层都会加二。
因此,答案只与根结点的选取有关,那么可以枚举n个点,取最小值。注意每棵树的答案,只与最大值和最大值减一有关。
AC代码
#include <cstdio> #include <cmath> #include <cctype> #include <algorithm> #include <cstring> #include <utility> #include <string> #include <iostream> #include <map> #include <set> #include <vector> #include <queue> #include <stack> using namespace std; #pragma comment(linker, "/STACK:1024000000,1024000000") #define eps 1e-10 #define inf 0x3f3f3f3f #define PI pair<int, int> typedef long long LL; const int maxn = 3e5 + 5; int a[maxn]; vector<int>G[maxn]; int main() { int n; while(scanf("%d", &n) == 1) { for(int i = 0; i <= n; ++i) G[i].clear(); int maxt = -inf; for(int i = 1; i <= n; ++i) { scanf("%d", &a[i]); maxt = max(maxt, a[i]); } //统计最大值和第二大的值的数量 int fir = 0, sec = 0; for(int i = 1; i <= n; ++i) { if(a[i] == maxt) ++fir; if(a[i] == maxt-1) ++sec; } int u, v; for(int i = 0; i < n-1; ++i) { scanf("%d%d", &u, &v); G[u].push_back(v); G[v].push_back(u); } int ans = inf; for(int i = 1; i <= n; ++i) { int f = 0, s = 0; for(int j = 0; j < G[i].size(); ++j) { int x = G[i][j]; if(a[x] == maxt) ++f; if(a[x] == maxt-1) ++s; } int hack = a[i]; int l1 = fir - f, l2 = sec - s; if(a[i] == maxt) l1--; if(a[i] == maxt-1) l2--; if(f > 0) hack = max(hack, maxt+1); if(s > 0) hack = max(hack, maxt); if(l1 > 0) hack = max(hack, maxt+2); if(l2 > 0) hack = max(hack, maxt+1); ans = min(ans, hack); } printf("%d\n", ans); } return 0; }
如有不当之处欢迎指出!