HDU 2298 三分

时间:2021-06-12 21:02:25

斜抛从(0,0)到(x,y),问其角度。

首先观察下就知道抛物线上横坐标为x的点与给定的点的距离与角度关系并不是线性的,当角度大于一定值时可能会时距离单调递减,所以先三分求个角度范围,保证其点一定在抛物线下方,这样距离和角度的关系就是单调的了,再二分角度即可。

/** @Date    : 2017-09-23 23:17:11
* @FileName: HDU 2298 三分.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8;
const double Pi = acos(-1.0);
const double g = 9.8; double check(double agl, double x, double v)
{
if(x == 0 && agl - Pi / 2.00 < eps)
return v * v / 2.000 / g;
double va = v * sin(agl);
double vb = v * cos(agl);
double t = x / vb;
double y = va * t - g * t * t / 2;
return y;
}
int main()
{
int T;
cin >> T;
while(T--)
{
double x, y, v;
scanf("%lf%lf%lf", &x, &y, &v);
if(x == 0)
{
double ny = check(Pi/2.00, 0, v);
if(y - ny > eps)
printf("-1\n");
else
printf("%.6lf\n", Pi/2.00);
continue;
}
double l = 0;
double r = Pi / 2.0;
while(r - l > eps)
{
double lmid = (l + l + r) / 3.0;
double rmid = (l + r + r) / 3.0;
if(check(lmid, x, v) > check(rmid, x, v))//三分一个最大角度范围使点总在曲线下方
r = rmid;
else l = lmid;
}
if(y - check(l, x, v) > eps)
{
printf("-1\n");
continue;
}
double ll = 0;
double rr = l;
while(rr - ll > eps)
{
double mid = (ll + rr) / 2.0;
if(check(mid, x, v) - y > eps)
rr = mid;
else
ll = mid;
}
printf("%.6lf\n", ll);
}
return 0;
}