Hadoop数据输入输出格式

时间:2021-02-09 20:57:24
MapReduce处理的基本原则之一是将输入数据分割成块,这些快可以在多台计算机上并行处理。 FSDataInputStream类扩展了java中的DataInputStream类,以达到随机读的特性,避免了从同开始读到分片的位置,从而提高了效率。

输入格式:InputFormat类定义了如何分割和读取输入文件,其中一个子类是FileInputFormat抽象类。

当开启Hadoop作业时,FileInputFormat会得到一个路径参数,这个路径内包含了所需要处理的文件,FileInputFormat会读取这个文件夹内的所有文件(译注:默认不包括子文件夹内的),然后它会把这些文件拆分成一个或多个的InputSplit。你可以通过JobConf对象的setInputFormat()方法来设定应用到你的作业输入文件上的输入格式。下表给出了一些标准的输入格式:

输入格式

描述

键类型

值类型

TextInputFormat

默认格式,读取文件的行

行的字节偏移量 (LongWriable

行的内容(Text

KeyValueInputFormat

把行解析为键值对

第一个tab字符前的所有字符Text

行剩下的内容Text

SequenceFileInputFormat

Hadoop定义的高性能二进制格式

用户自定义

用户自定义

    数据格式类的继承关系如图:     Hadoop数据输入输出格式Hadoop数据输入输出格式
输入块(InputSplit):一个输入块描述了构成MapReduce程序中单个map任务的一个单元。默认的大小为64M
记录读取器(RecordReader):InputSplit定义了如何切分工作,但是没有描述如何去访问它。 RecordReader类则是实际的用来加载数据并把数据转换为适合mapper读取的键值对。


输出格式:提供给OutputCollector的键值对会被写到输出文件中,写入的方式由输出格式控制。

OutputFormat的功能跟前面描述的InputFormat类很像,Hadoop提供的OutputFormat的实例会把文件写在本地磁盘或HDFS上,它们都是继承自公共的FileInputFormat类。每一个reducer会把结果输出写在公共文件夹中一个单独的文件内,这些文件的命名一般是part-nnnnn,nnnnn是关联到某个reduce任务的partition的id,输出文件夹通过FileOutputFormat.setOutputPath() 来设置。你可以通过具体MapReduce作业的JobConf对象的setOutputFormat()方法来设置具体用到的输出格式。

输出格式

描述

TextOutputFormat

默认的输出格式, 以 "key \t value" 的方式输出行

SequenceFileOutputFormat

输出二进制文件,适合于读取为子MapReduce作业的输入

NullOutputFormat

忽略收到的数据,即不做输出 



额外的MapReduce功能
 Hadoop数据输入输出格式
上面图片Combiner的MapReduce数据流
  Combiner:前面展示的流水线忽略了一个可以优化MapReduce作业所使用带宽的步骤,这个过程叫Combiner,它在Mapper之后Reducer之前运行。Combiner是可选的,如果这个过程适合于你的作业,Combiner实例会在每一个运行map任务的节点上运行。Combiner会接收特定节点上的Mapper实例的输出作为输入,接着Combiner的输出会被发送到Reducer那里,而不是发送Mapper的输出。Combiner是一个“迷你reduce”过程,它只处理单台机器生成的数据。
  词频统计是一个可以展示Combiner的用处的基础例子,上面的词频统计程序为每一个它看到的词生成了一个(word,1)键值对。所以如果在同一个文档内“cat”出现了3次,(”cat”,1)键值对会被生成3次,这些键值对会被送到Reducer那里。通过使用Combiner,这些键值对可以被压缩为一个送往Reducer的键值对(”cat”,3)。现在每一个节点针对每一个词只会发送一个值到reducer,大大减少了shuffle过程所需要的带宽并加速了作业的执行。这里面最爽的就是我们不用写任何额外的代码就可以享用此功能!如果你的reduce是可交换及可组合的,那么它也就可以作为一个Combiner。你只要在driver中添加下面这行代码就可以在词频统计程序中启用Combiner。

conf.setCombinerClass(Reduce.class);

Combiner应是Reducer接口的实例,如果你的Reducer由于不可交换或不可组合不能作为Combiner,你仍可以写一个第三方类来作为你的作业的Combiner。