原文链接https://www.cnblogs.com/zhouzhendong/p/CF715B.html
题解
接下来说的“边”都指代“边权未知的边”。
将所有边都设为 L+1,如果dis(S,T) < L ,那么必然无解。
将所有边都设为 1 ,如果 dis(S,T) > L ,那么必然无解。
考虑将任意一条边的权值+1,则 dis(S,T) 会 +0 或者 +1 。
如果将所有边按照某一个顺序不断+1,直到所有边的权值都是L+1了,那么在这个过程中,dis(S,T) 是递增的,而且一定在某一个时刻 dis(S,T) = L。
这样的话我们就可以二分答案+dijkstra解决这个问题了。
时间复杂度 $O(n\log (n+m) \log (mL))$ 。
事实上有更优秀的做法(我并没有想到),懒得写了,给个链接:
https://blog.csdn.net/aufeas/article/details/52916704
代码
#include <bits/stdc++.h>
#define clr(x) memset(x,0,sizeof (x))
using namespace std;
typedef long long LL;
#define pii pair <int,int>
LL read(){
LL x=0,f=0;
char ch=getchar();
while (!isdigit(ch))
f|=ch=='-',ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return f?-x:x;
}
const int N=1005,M=10005,INF=1e9+5;
int n,m,L,S,T;
struct Edge{
int x,y,z;
}e[M];
struct Graph{
int cnt,y[M*2],z[M*2],nxt[M*2],fst[N];
void clear(){
cnt=1,clr(fst);
}
void add(int a,int b,int c){
y[++cnt]=b,nxt[cnt]=fst[a],fst[a]=cnt,z[cnt]=c;
}
void update(int id,int v){
z[id<<1]=z[id<<1|1]=v;
}
}g;
vector <int> eid;
int dis[N],vis[N];
int Dijkstra(){
static priority_queue <pii,vector <pii>,greater <pii> > Q;
while (!Q.empty())
Q.pop();
for (int i=1;i<=n;i++)
dis[i]=INF,vis[i]=0;
dis[S]=0;
Q.push(make_pair(dis[S],S));
while (!Q.empty()){
pii p=Q.top();
Q.pop();
int x=p.second;
if (vis[x]||dis[x]!=p.first)
continue;
vis[x]=1;
for (int i=g.fst[x];i;i=g.nxt[i]){
int y=g.y[i],z=g.z[i];
if (!vis[y]&&dis[x]+z<dis[y]){
dis[y]=dis[x]+z;
Q.push(make_pair(dis[y],y));
}
}
}
return dis[T];
}
int check(LL v){
for (auto i : eid){
LL d=min(v,(LL)L);
g.update(i,d+1);
v-=d;
}
return Dijkstra()<=L;
}
int main(){
n=read(),m=read(),L=read(),S=read()+1,T=read()+1;
g.clear();
for (int i=1;i<=m;i++){
int x=read()+1,y=read()+1,z=read();
e[i].x=x,e[i].y=y,e[i].z=z;
g.add(x,y,z);
g.add(y,x,z);
if (!z)
eid.push_back(i);
}
for (auto i : eid)
g.update(i,INF);
if (Dijkstra()<L)
return puts("NO"),0;
for (auto i : eid)
g.update(i,1);
if (Dijkstra()>L)
return puts("NO"),0;
LL l=0,r=(LL)L*(int)eid.size(),mid,ans=l;
while (l<=r){
mid=(l+r)>>1;
if (check(mid))
l=mid+1,ans=mid;
else
r=mid-1;
}
for (auto i : eid){
LL d=min(ans,(LL)L);
e[i].z=d+1;
ans-=d;
}
puts("YES");
for (int i=1;i<=m;i++)
printf("%d %d %d\n",e[i].x-1,e[i].y-1,e[i].z);
return 0;
}