首先考虑二分,然后发现不可行....
注意到\(k\)十分小,尝试从这里突破
首先用扫描线来处理出以每个节点为右端点的区间的权值和,用可持久化线段树存下来
在所有的右端点相同的区间中,挑一个权值最大的,放入堆中
每次从堆中取出最大元素,然后从被删除的右端点区间中选一个次大的区间
重复\(k\)次即可
复杂度\(O(n \log n + k \log n)\)
一\(A\)开心
#include <map>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define ll long long
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)
#define gc getchar
inline int read() {
int p = 0, w = 1; char c = gc();
while(c > '9' || c < '0') { if(c == '-') w = -1; c = gc(); }
while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
return p * w;
}
const int sid = 1e5 + 5;
const int eid = 2e7 + 5;
int n, k, id, a[sid], rt[sid];
map <int, int> lst;
ll tag[eid];
int ls[eid], rs[eid];
struct ym {
ll max; int maxp;
friend bool operator < (ym a, ym b)
{ return a.max < b.max; }
} t[eid];
priority_queue < pair <ym, int> > q;
inline int newnode(int pre) {
++ id;
if(pre) t[id] = t[pre]; tag[id] = tag[pre];
ls[id] = ls[pre]; rs[id] = rs[pre];
return id;
}
inline void mdf(int &o, int p, int l, int r, int ml, int mr, ll v) {
o = newnode(p);
if(ml <= l && mr >= r) {
tag[o] += v;
t[o].max += v;
if(l == r) t[o].maxp = l;
return;
}
int mid = (l + r) >> 1;
if(ml <= mid) mdf(ls[o], ls[p], l, mid, ml, mr, v);
if(mr > mid) mdf(rs[o], rs[p], mid + 1, r, ml, mr, v);
t[o] = max(t[ls[o]], t[rs[o]]); t[o].max += tag[o];
}
void wish_upon_to_the_star() {
t[0].max = -1e16;
rep(i, 1, n) {
mdf(rt[i], rt[i - 1], 1, n, i, i, 0);
mdf(rt[i], rt[i], 1, n, lst[a[i]] + 1, i, a[i]);
lst[a[i]] = i;
q.push(make_pair(t[rt[i]], i));
}
ll ans = 0;
while(k --) {
ym tmp = q.top().first;
int id = tmp.maxp, pos = q.top().second;
q.pop(); ans = tmp.max;
mdf(rt[pos], rt[pos], 1, n, id, id, -1e16);
q.push(make_pair(t[rt[pos]], pos));
}
printf("%lld\n", ans);
}
int main() {
n = read(); k = read();
rep(i, 1, n) a[i] = read();
wish_upon_to_the_star();
return 0;
}