I am reading the data[json as String] from kafka queue and tring to parse json as String into case class using liftweb json api.
我正在读取kafka队列中的数据[json作为字符串],并尝试使用liftweb json api将json作为字符串解析为case类。
here is the code Snippet
下面是代码片段
val sparkStreamingContext = new StreamingContext(sparkConf, Seconds(5))
val kafkaParam: Map[String, String] = Map(
"bootstrap.servers" -> kafkaServer,
"key.deserializer" -> classOf[StringDeserializer].getCanonicalName,
"value.deserializer" -> classOf[StringDeserializer].getCanonicalName,
"zookeeper.connect" -> zookeeperUrl,
"group.id" -> "demo-group")
import org.apache.spark.streaming.kafka._
import net.liftweb.json.{DefaultFormats, Formats}
import net.liftweb.json._
val topicSet = Map(kafkaTopic -> 1)
val streaming = KafkaUtils.createStream[String, String, StringDecoder, StringDecoder](sparkStreamingContext, kafkaParam, topicSet, StorageLevel.MEMORY_AND_DISK)
streaming.map { case (id, tweet) => implicit val formats: Formats = DefaultFormats
(id, parse(tweet).extract[Tweet])
}.print()
sparkStreamingContext.start()
sparkStreamingContext.awaitTermination()
and i am getting this exception
我得到了这个例外
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0.0 in stage 1.0 (TID 1) had a not serializable result: net.liftweb.json.DefaultFormats$
Serialization stack:
- object not serializable (class: net.liftweb.json.DefaultFormats$, value: net.liftweb.json.DefaultFormats$@74a2fec)
- field (class: Tweet, name: formats, type: interface net.liftweb.json.Formats)
- object (class Tweet, Tweet(Akash24,Adele))
- field (class: scala.Tuple2, name: _2, type: class java.lang.Object)
- object (class scala.Tuple2, (1,Tweet(Akash24,Adele)))
- element of array (index: 0)
- array (class [Lscala.Tuple2;, size 11)
Can anyone help me fix this problem Any Help will be appreciate Thanks
有人能帮我解决这个问题吗
1 个解决方案
#1
1
From the logs it looks like a simple exception of Class not Serializable. to correct is use following code:
从日志中,它看起来像一个简单的类,而不是序列化的。正确使用以下代码:
sparkConf.registerKryoClasses(Array(classOf[DefaultFormats]))
val sparkStreamingContext = new StreamingContext(sparkConf, Seconds(5))
val kafkaParam: Map[String, String] = Map(
"bootstrap.servers" -> kafkaServer,
"key.deserializer" -> classOf[StringDeserializer].getCanonicalName,
"value.deserializer" -> classOf[StringDeserializer].getCanonicalName,
"zookeeper.connect" -> zookeeperUrl,
"group.id" -> "demo-group")
import org.apache.spark.streaming.kafka._
import net.liftweb.json.{DefaultFormats, Formats}
import net.liftweb.json._
val topicSet = Map(kafkaTopic -> 1)
val streaming = KafkaUtils.createStream[String, String, StringDecoder, StringDecoder](sparkStreamingContext, kafkaParam, topicSet, StorageLevel.MEMORY_AND_DISK)
streaming.map { case (id, tweet) => implicit val formats: Formats = DefaultFormats
(id, parse(tweet).extract[Tweet])
}.print()
sparkStreamingContext.start()
sparkStreamingContext.awaitTermination()
It will make the DefaultFormats
class serializable and Spark master will able to send implicit val formats
to all worker nodes.
它将使DefaultFormats类可序列化,Spark master将能够将隐式的val格式发送到所有工作节点。
#1
1
From the logs it looks like a simple exception of Class not Serializable. to correct is use following code:
从日志中,它看起来像一个简单的类,而不是序列化的。正确使用以下代码:
sparkConf.registerKryoClasses(Array(classOf[DefaultFormats]))
val sparkStreamingContext = new StreamingContext(sparkConf, Seconds(5))
val kafkaParam: Map[String, String] = Map(
"bootstrap.servers" -> kafkaServer,
"key.deserializer" -> classOf[StringDeserializer].getCanonicalName,
"value.deserializer" -> classOf[StringDeserializer].getCanonicalName,
"zookeeper.connect" -> zookeeperUrl,
"group.id" -> "demo-group")
import org.apache.spark.streaming.kafka._
import net.liftweb.json.{DefaultFormats, Formats}
import net.liftweb.json._
val topicSet = Map(kafkaTopic -> 1)
val streaming = KafkaUtils.createStream[String, String, StringDecoder, StringDecoder](sparkStreamingContext, kafkaParam, topicSet, StorageLevel.MEMORY_AND_DISK)
streaming.map { case (id, tweet) => implicit val formats: Formats = DefaultFormats
(id, parse(tweet).extract[Tweet])
}.print()
sparkStreamingContext.start()
sparkStreamingContext.awaitTermination()
It will make the DefaultFormats
class serializable and Spark master will able to send implicit val formats
to all worker nodes.
它将使DefaultFormats类可序列化,Spark master将能够将隐式的val格式发送到所有工作节点。