转发请注明原创地址 http://www.cnblogs.com/dongxiao-yang/p/7994357.html
spark-streaming定时对 DStreamGraph
和 JobScheduler
做 Checkpoint,来记录整个 DStreamGraph
的变化和每个 batch 的 job 的完成情况,Checkpoint 发起的间隔默认的是和 batchDuration 一致;即每次 batch 发起、提交了需要运行的 job 后就做 Checkpoint。另外在 job 完成了更新任务状态的时候再次做一下 Checkpoint。
一 checkpoint生成
job生成
private def generateJobs(time: Time) { // Checkpoint all RDDs marked for checkpointing to ensure their lineages are // truncated periodically. Otherwise, we may run into stack overflows (SPARK-6847). ssc.sparkContext.setLocalProperty(RDD.CHECKPOINT_ALL_MARKED_ANCESTORS, "true") Try { jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch graph.generateJobs(time) // generate jobs using allocated block } match { case Success(jobs) => val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time) jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos)) case Failure(e) => jobScheduler.reportError("Error generating jobs for time " + time, e) PythonDStream.stopStreamingContextIfPythonProcessIsDead(e) } eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false)) }
job 完成
private def clearMetadata(time: Time) { ssc.graph.clearMetadata(time) // If checkpointing is enabled, then checkpoint, // else mark batch to be fully processed if (shouldCheckpoint) { eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = true)) } else { // If checkpointing is not enabled, then delete metadata information about // received blocks (block data not saved in any case). Otherwise, wait for // checkpointing of this batch to complete. val maxRememberDuration = graph.getMaxInputStreamRememberDuration() jobScheduler.receiverTracker.cleanupOldBlocksAndBatches(time - maxRememberDuration) jobScheduler.inputInfoTracker.cleanup(time - maxRememberDuration) markBatchFullyProcessed(time) } }
上文里面的eventLoop是JobGenerator内部的一个消息事件队列的封装,eventLoop内部会有一个后台线程不断的去消费事件,所以DoCheckpoint这种类型的事件会经过processEvent ->
doCheckpoint 由checkpointWriter把生成的Checkpoint对象写到外部存储:
/** Processes all events */ private def processEvent(event: JobGeneratorEvent) { logDebug("Got event " + event) event match { case GenerateJobs(time) => generateJobs(time) case ClearMetadata(time) => clearMetadata(time) case DoCheckpoint(time, clearCheckpointDataLater) => doCheckpoint(time, clearCheckpointDataLater) case ClearCheckpointData(time) => clearCheckpointData(time) } } /** Perform checkpoint for the give `time`. */ private def doCheckpoint(time: Time, clearCheckpointDataLater: Boolean) { if (shouldCheckpoint && (time - graph.zeroTime).isMultipleOf(ssc.checkpointDuration)) { logInfo("Checkpointing graph for time " + time) ssc.graph.updateCheckpointData(time) checkpointWriter.write(new Checkpoint(ssc, time), clearCheckpointDataLater) } }
doCheckpoint在调用checkpointWriter写数据到hdfs之前,首先会运行一下ssc.graph.updateCheckpointData(time),这个方法的主要作用是更新DStreamGraph里所有input和output stream对应的checkpointData属性,调用链路为DStreamGraph.updateCheckpointData -> Dstream.updateCheckpointData -> checkpointData.update
def updateCheckpointData(time: Time) { logInfo("Updating checkpoint data for time " + time) this.synchronized { outputStreams.foreach(_.updateCheckpointData(time)) } logInfo("Updated checkpoint data for time " + time) } private[streaming] def updateCheckpointData(currentTime: Time) { logDebug(s"Updating checkpoint data for time $currentTime") checkpointData.update(currentTime) dependencies.foreach(_.updateCheckpointData(currentTime)) logDebug(s"Updated checkpoint data for time $currentTime: $checkpointData") } private[streaming] class DirectKafkaInputDStreamCheckpointData extends DStreamCheckpointData(this) { def batchForTime: mutable.HashMap[Time, Array[(String, Int, Long, Long)]] = { data.asInstanceOf[mutable.HashMap[Time, Array[OffsetRange.OffsetRangeTuple]]] } override def update(time: Time): Unit = { batchForTime.clear() generatedRDDs.foreach { kv => val a = kv._2.asInstanceOf[KafkaRDD[K, V]].offsetRanges.map(_.toTuple).toArray batchForTime += kv._1 -> a } } override def cleanup(time: Time): Unit = { } override def restore(): Unit = { batchForTime.toSeq.sortBy(_._1)(Time.ordering).foreach { case (t, b) => logInfo(s"Restoring KafkaRDD for time $t ${b.mkString("[", ", ", "]")}") generatedRDDs += t -> new KafkaRDD[K, V]( context.sparkContext, executorKafkaParams, b.map(OffsetRange(_)), getPreferredHosts, // during restore, it's possible same partition will be consumed from multiple // threads, so dont use cache false ) } } }
以DirectKafkaInputDStream为例,代码里重写了checkpointData的update等接口,所以DirectKafkaInputDStream会在checkpoint之前把正在运行的kafkaRDD对应的topic,partition,fromoffset,untiloffset全部存储到checkpointData里面data这个HashMap的属性当中,用于写checkpoint时进行序列化。
一个checkpoint里面包含的对象列表如下:
class Checkpoint(ssc: StreamingContext, val checkpointTime: Time) extends Logging with Serializable { val master = ssc.sc.master val framework = ssc.sc.appName val jars = ssc.sc.jars val graph = ssc.graph val checkpointDir = ssc.checkpointDir val checkpointDuration = ssc.checkpointDuration val pendingTimes = ssc.scheduler.getPendingTimes().toArray val sparkConfPairs = ssc.conf.getAll
二 从checkpoint恢复服务
spark-streaming启用checkpoint代码里的StreamingContext必须严格按照官方demo实例的架构使用,即所有的streaming逻辑都放在一个返回StreamingContext的createContext方法上,
通过StreamingContext.getOrCreate方法进行初始化,在CheckpointReader.read找到checkpoint文件并且成功反序列化出checkpoint对象后,返回一个包含该checkpoint对象的StreamingContext,这个时候程序里的createContext就不会被调用,反之如果程序是第一次启动会通过createContext初始化StreamingContext
def getOrCreate( checkpointPath: String, creatingFunc: () => StreamingContext, hadoopConf: Configuration = SparkHadoopUtil.get.conf, createOnError: Boolean = false ): StreamingContext = { val checkpointOption = CheckpointReader.read( checkpointPath, new SparkConf(), hadoopConf, createOnError) checkpointOption.map(new StreamingContext(null, _, null)).getOrElse(creatingFunc()) } def read( checkpointDir: String, conf: SparkConf, hadoopConf: Configuration, ignoreReadError: Boolean = false): Option[Checkpoint] = { val checkpointPath = new Path(checkpointDir) val fs = checkpointPath.getFileSystem(hadoopConf) // Try to find the checkpoint files val checkpointFiles = Checkpoint.getCheckpointFiles(checkpointDir, Some(fs)).reverse if (checkpointFiles.isEmpty) { return None } // Try to read the checkpoint files in the order logInfo(s"Checkpoint files found: ${checkpointFiles.mkString(",")}") var readError: Exception = null checkpointFiles.foreach { file => logInfo(s"Attempting to load checkpoint from file $file") try { val fis = fs.open(file) val cp = Checkpoint.deserialize(fis, conf) logInfo(s"Checkpoint successfully loaded from file $file") logInfo(s"Checkpoint was generated at time ${cp.checkpointTime}") return Some(cp) } catch { case e: Exception => readError = e logWarning(s"Error reading checkpoint from file $file", e) } } // If none of checkpoint files could be read, then throw exception if (!ignoreReadError) { throw new SparkException( s"Failed to read checkpoint from directory $checkpointPath", readError) } None } }
在从checkpoint恢复的过程中DStreamGraph由checkpoint恢复,下文的代码调用路径StreamingContext.graph->DStreamGraph.restoreCheckpointData -> DStream.restoreCheckpointData->checkpointData.restore
private[streaming] val graph: DStreamGraph = { if (isCheckpointPresent) { _cp.graph.setContext(this) _cp.graph.restoreCheckpointData() _cp.graph } else { require(_batchDur != null, "Batch duration for StreamingContext cannot be null") val newGraph = new DStreamGraph() newGraph.setBatchDuration(_batchDur) newGraph } } def restoreCheckpointData() { logInfo("Restoring checkpoint data") this.synchronized { outputStreams.foreach(_.restoreCheckpointData()) } logInfo("Restored checkpoint data") } private[streaming] def restoreCheckpointData() { if (!restoredFromCheckpointData) { // Create RDDs from the checkpoint data logInfo("Restoring checkpoint data") checkpointData.restore() dependencies.foreach(_.restoreCheckpointData()) restoredFromCheckpointData = true logInfo("Restored checkpoint data") } } override def restore(): Unit = { batchForTime.toSeq.sortBy(_._1)(Time.ordering).foreach { case (t, b) => logInfo(s"Restoring KafkaRDD for time $t ${b.mkString("[", ", ", "]")}") generatedRDDs += t -> new KafkaRDD[K, V]( context.sparkContext, executorKafkaParams, b.map(OffsetRange(_)), getPreferredHosts, // during restore, it's possible same partition will be consumed from multiple // threads, so dont use cache false ) } }
仍然以DirectKafkaInputDStreamCheckpointData为例,这个方法从上文保存的checkpoint.data对象里获取RDD运行时的对应信息恢复出停止时的KafkaRDD。
private def restart() { // If manual clock is being used for testing, then // either set the manual clock to the last checkpointed time, // or if the property is defined set it to that time if (clock.isInstanceOf[ManualClock]) { val lastTime = ssc.initialCheckpoint.checkpointTime.milliseconds val jumpTime = ssc.sc.conf.getLong("spark.streaming.manualClock.jump", 0) clock.asInstanceOf[ManualClock].setTime(lastTime + jumpTime) } val batchDuration = ssc.graph.batchDuration // Batches when the master was down, that is, // between the checkpoint and current restart time val checkpointTime = ssc.initialCheckpoint.checkpointTime val restartTime = new Time(timer.getRestartTime(graph.zeroTime.milliseconds)) val downTimes = checkpointTime.until(restartTime, batchDuration) logInfo("Batches during down time (" + downTimes.size + " batches): " + downTimes.mkString(", ")) // Batches that were unprocessed before failure val pendingTimes = ssc.initialCheckpoint.pendingTimes.sorted(Time.ordering) logInfo("Batches pending processing (" + pendingTimes.length + " batches): " + pendingTimes.mkString(", ")) // Reschedule jobs for these times val timesToReschedule = (pendingTimes ++ downTimes).filter { _ < restartTime } .distinct.sorted(Time.ordering) logInfo("Batches to reschedule (" + timesToReschedule.length + " batches): " + timesToReschedule.mkString(", ")) timesToReschedule.foreach { time => // Allocate the related blocks when recovering from failure, because some blocks that were // added but not allocated, are dangling in the queue after recovering, we have to allocate // those blocks to the next batch, which is the batch they were supposed to go. jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch jobScheduler.submitJobSet(JobSet(time, graph.generateJobs(time))) } // Restart the timer timer.start(restartTime.milliseconds) logInfo("Restarted JobGenerator at " + restartTime) }
最后,在restart的过程中,JobGenerator通过当前时间和上次程序停止的时间计算出程序重启过程*有多少batch没有生成,加上上一次程序死掉的过程中有多少正在运行的job,全部
进行Reschedule,补跑任务。
参考文档
2Spark Streaming揭秘 Day33 checkpoint的使用