spark streaming 整合kafka(二)

时间:2021-12-18 20:46:42

转载:https://www.iteblog.com/archives/1326.html

   和基于Receiver接收数据不一样,这种方式定期地从Kafka的topic+partition中查询最新的偏移量,再根据定义的偏移量范围在每个batch里面处理数据。当作业需要处理的数据来临时,spark通过调用Kafka的简单消费者API读取一定范围的数据。这个特性目前还处于试验阶段,而且仅仅在Scala和Java语言中提供相应的API。

   spark streaming 整合kafka(二)

 

 

  和基于Receiver方式相比,这种方式主要有一些几个优点:
  (1)、简化并行。我们不需要创建多个Kafka 输入流,然后union他们。而使用directStream,Spark Streaming将会创建和Kafka分区一样的RDD分区个数,而且会从Kafka并行地读取数据,也就是说Spark分区将会和Kafka分区有一一对应的关系,这对我们来说很容易理解和使用;

  (2)、高效。第一种实现零数据丢失是通过将数据预先保存在WAL中,这将会复制一遍数据,这种方式实际上很不高效,因为这导致了数据被拷贝两次:一次是被Kafka复制;另一次是写到WAL中。但是本文介绍的方法因为没有Receiver,从而消除了这个问题,所以不需要WAL日志;

  (3)、恰好一次语义(Exactly-once semantics)。文章中通过使用Kafka高层次的API把偏移量写入Zookeeper中,这是读取Kafka中数据的传统方法。虽然这种方法可以保证零数据丢失,但是还是存在一些情况导致数据会丢失,因为在失败情况下通过Spark Streaming读取偏移量和Zookeeper中存储的偏移量可能不一致。而本文提到的方法是通过Kafka低层次的API,并没有使用到Zookeeper,偏移量仅仅被Spark Streaming保存在Checkpoint中。这就消除了Spark Streaming和Zookeeper中偏移量的不一致,而且可以保证每个记录仅仅被Spark Streaming读取一次,即使是出现故障。

  但是本方法唯一的坏处就是没有更新Zookeeper中的偏移量,所以基于Zookeeper的Kafka监控工具将会无法显示消费的状况。然而你可以通过Spark提供的API手动地将偏移量写入到Zookeeper中。如何使用呢?其实和方法一差不多

 

1、引入依赖。

  对于Scala和Java项目,你可以在你的pom.xml文件引入以下依赖:

<dependency>
   <groupId>org.apache.spark</groupId>
   <artifactId>spark-streaming-kafka_2. 10 </artifactId>
   <version> 1.3 . 0 </version>
</dependency>

  如果你是使用SBT,可以这么引入:

libraryDependencies += "org.apache.spark" % "spark-streaming-kafka_2.10" % "1.3.0"

2、编程

  在Streaming应用程序代码中,引入KafkaUtils ,并创建DStream输入流:

import org.apache.spark.streaming.kafka. _
 
val directKafkaStream = KafkaUtils.createDirectStream[
     [key class ], [value class ], [key decoder class ], [value decoder class ] ](
     streamingContext, [map of Kafka parameters], [set of topics to consume])

  在 Kafka parameters参数中,你必须指定 metadata.broker.list或者bootstrap.servers参数。在默认情况下,Spark Streaming将会使用最大的偏移量来读取Kafka每个分区的数据。如果你配置了auto.offset.reset为smallest,那么它将会从最小的偏移量开始消费。

  当然,你也可以使用KafkaUtils.createDirectStream的另一个版本从任意的位置消费数据。如果你想回去每个batch中Kafka的偏移量,你可以如下操作:

directKafkaStream.foreachRDD { rdd = >
     val offsetRanges = rdd.asInstanceOf[HasOffsetRanges]
     // offsetRanges.length = # of Kafka partitions being consumed
     ...
}

你可以通过这种方式来手动地更新Zookeeper里面的偏移量,使得基于Zookeeper偏移量的Kafka监控工具可以使用。

  注意到 HasOffsetRanges的类型转换仅仅在第一个被directKafkaStream调用的方法成功后,为了获得 offset 使用 transform() 代替 foreachRDD()方法,然后进一步调用spark方法,要意识到在RDD分区和Kafka分区之间是一对一关系所以获得offset方法不能保留在 shuffle 或者repartition之后,比如reduceByKey() 或者 windows().

  另一个要注意的地方因为这个方法没有receivers方法,所以与接收器相关联的配置不起任何作用,代替的使用 spark.streaming.kafka.*.配置,一个比较重要的配置是利用直接读取的api 从Kafka的每个分区 每秒钟读取的数据量  spark.streaming.kafka.maxRatePerPartition。