A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous sequence of RDDs (of the same type) representing a continuous stream of data.
Dstream本质就是离散化的stream,将stream离散化成一组RDD的list,所以基本的操作仍然是以RDD为基础
下面看到DStream的基本定义,对于普通的RDD而言,时间对于DStream是更为重要的因素
将stream切分成RDD的interval时间,stream开始的时间,DStream需要保留的RDD的时间,每个RDD所对于的时间key……
DStream抽象定义
/** * A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous * sequence of RDDs (of the same type) representing a continuous stream of data (see * org.apache.spark.rdd.RDD in the Spark core documentation for more details on RDDs). * DStreams can either be created from live data (such as, data from TCP sockets, Kafka, Flume, * etc.) using a [[org.apache.spark.streaming.StreamingContext]] or it can be generated by * transforming existing DStreams using operations such as `map`, * `window` and `reduceByKeyAndWindow`. While a Spark Streaming program is running, each DStream * periodically generates a RDD, either from live data or by transforming the RDD generated by a * parent DStream. * * This class contains the basic operations available on all DStreams, such as `map`, `filter` and * `window`. In addition, [[org.apache.spark.streaming.dstream.PairDStreamFunctions]] contains * operations available only on DStreams of key-value pairs, such as `groupByKeyAndWindow` and * `join`. These operations are automatically available on any DStream of pairs * (e.g., DStream[(Int, Int)] through implicit conversions when * `org.apache.spark.streaming.StreamingContext._` is imported. * * DStreams internally is characterized by a few basic properties: * - A list of other DStreams that the DStream depends on * - A time interval at which the DStream generates an RDD * - A function that is used to generate an RDD after each time interval */
abstract class DStream[T: ClassTag] (
@transient private[streaming] var ssc: StreamingContext
) extends Serializable with Logging {
// =======================================================================
// Methods that should be implemented by subclasses of DStream
// =======================================================================
/** Time interval after which the DStream generates a RDD */
def slideDuration: Duration // 将stream切分成RDD的interval
/** List of parent DStreams on which this DStream depends on */
def dependencies: List[DStream[_]] // 和RDD一样,DStream之间也存在dependency关系
/** Method that generates a RDD for the given time */
def compute (validTime: Time): Option[RDD[T]] // RDD的生成逻辑
// =======================================================================
// Methods and fields available on all DStreams
// =======================================================================
// RDDs generated, marked as private[streaming] so that testsuites can access it
@transient
private[streaming] var generatedRDDs = new HashMap[Time, RDD[T]] () // 最为核心的结构,可以看到DStream就是以time为key的RDD的hashmap
// Time zero for the DStream
private[streaming] var zeroTime: Time = null // Stream开始的时间
// Duration for which the DStream will remember each RDD created
private[streaming] var rememberDuration: Duration = null // Stream是无限的,而在DStream不可能保留所有的RDD,所以设置DStream需要remember的duration
// Storage level of the RDDs in the stream
private[streaming] var storageLevel: StorageLevel = StorageLevel.NONE
// Checkpoint details
private[streaming] val mustCheckpoint = false
private[streaming] var checkpointDuration: Duration = null
private[streaming] val checkpointData = new DStreamCheckpointData(this)
// Reference to whole DStream graph
private[streaming] var graph: DStreamGraph = null // DStreamGraph
// Duration for which the DStream requires its parent DStream to remember each RDD created
private[streaming] def parentRememberDuration = rememberDuration
/** Return the StreamingContext associated with this DStream */
def context = ssc
/** Persist the RDDs of this DStream with the given storage level */
def persist(level: StorageLevel): DStream[T] = {
this.storageLevel = level
this
}
/** Persist RDDs of this DStream with the default storage level (MEMORY_ONLY_SER) */
def persist(): DStream[T] = persist(StorageLevel.MEMORY_ONLY_SER)
/** Persist RDDs of this DStream with the default storage level (MEMORY_ONLY_SER) */
def cache(): DStream[T] = persist()
/** * Enable periodic checkpointing of RDDs of this DStream * @param interval Time interval after which generated RDD will be checkpointed */
def checkpoint(interval: Duration): DStream[T] = {
persist()
checkpointDuration = interval
this
}
}
getOrCompute
注意的是,这里是产生RDD对象,而不是真正的进行计算,只有在runjob时才会做真正的计算
Spark RDD本身是不包含具体数据的,只是定义了workflow(依赖关系),处理逻辑
/** * Retrieve a precomputed RDD of this DStream, or computes the RDD. This is an internal * method that should not be called directly. */
private[streaming] def getOrCompute(time: Time): Option[RDD[T]] = {
// If this DStream was not initialized (i.e., zeroTime not set), then do it
// If RDD was already generated, then retrieve it from HashMap
generatedRDDs.get(time) match {
// If an RDD was already generated and is being reused, then
// probably all RDDs in this DStream will be reused and hence should be cached
case Some(oldRDD) => Some(oldRDD)
// if RDD was not generated, and if the time is valid
// (based on sliding time of this DStream), then generate the RDD
case None => { // 需要compute
if (isTimeValid(time)) { // invalid的定义,(time <= zeroTime || ! (time - zeroTime).isMultipleOf(slideDuration)
compute(time) match { // 使用compute生成RDD对象
case Some(newRDD) =>
if (storageLevel != StorageLevel.NONE) {
newRDD.persist(storageLevel) // 设置persist level
}
if (checkpointDuration != null &&
(time - zeroTime).isMultipleOf(checkpointDuration)) {
newRDD.checkpoint() // 设置checkpoint
}
generatedRDDs.put(time, newRDD) // 将产生的RDD对象放入generatedRDDs
Some(newRDD)
case None =>
None
}
} else {
None
}
}
}
}
generateJob
对于用getOrCompute产生的RDD对象,需要封装成job
而Job的关键,jobFunc,其实就是想Spark集群提交一个job
这里只是使用了emptyFunc,具体的output逻辑是需要被具体的outputDStream改写的
/** * Generate a SparkStreaming job for the given time. This is an internal method that * should not be called directly. This default implementation creates a job * that materializes the corresponding RDD. Subclasses of DStream may override this * to generate their own jobs. */
private[streaming] def generateJob(time: Time): Option[Job] = {
getOrCompute(time) match {
case Some(rdd) => {
val jobFunc = () => {
val emptyFunc = { (iterator: Iterator[T]) => {} }
context.sparkContext.runJob(rdd, emptyFunc)
}
Some(new Job(time, jobFunc))
}
case None => None
}
}
clearMetadata
清除过时的RDD对象,其中还会做unpersist,以及调用dependencies的clearMetadata
/** * Clear metadata that are older than `rememberDuration` of this DStream. * This is an internal method that should not be called directly. This default * implementation clears the old generated RDDs. Subclasses of DStream may override * this to clear their own metadata along with the generated RDDs. */
private[streaming] def clearMetadata(time: Time) {
val oldRDDs = generatedRDDs.filter(_._1 <= (time - rememberDuration))
generatedRDDs --= oldRDDs.keys
if (ssc.conf.getBoolean("spark.streaming.unpersist", false)) {
oldRDDs.values.foreach(_.unpersist(false))
}
dependencies.foreach(_.clearMetadata(time))
}
具体DStream的定义
FilteredDStream
package org.apache.spark.streaming.dstream
private[streaming]
class FilteredDStream[T: ClassTag](
parent: DStream[T],
filterFunc: T => Boolean
) extends DStream[T](parent.ssc) {
override def dependencies = List(parent)
override def slideDuration: Duration = parent.slideDuration
override def compute(validTime: Time): Option[RDD[T]] = {
parent.getOrCompute(validTime).map(_.filter(filterFunc))
}
}
WindowedDStream
private[streaming]
class WindowedDStream[T: ClassTag](
parent: DStream[T],
_windowDuration: Duration,
_slideDuration: Duration)
extends DStream[T](parent.ssc) {
// Persist parent level by default, as those RDDs are going to be obviously reused.
parent.persist(StorageLevel.MEMORY_ONLY_SER) //默认将parentRDD设置persist,因为parent RDD会在window slide中被反复读到
def windowDuration: Duration = _windowDuration // Windows大小
override def dependencies = List(parent)
override def slideDuration: Duration = _slideDuration // Windows滑动
override def parentRememberDuration: Duration = rememberDuration + windowDuration // 保证RememberDuratioin一定大于windowDuration
override def persist(level: StorageLevel): DStream[T] = {
// Do not let this windowed DStream be persisted as windowed (union-ed) RDDs share underlying
// RDDs and persisting the windowed RDDs would store numerous copies of the underlying data.
// Instead control the persistence of the parent DStream.
// 不要直接persist windowed RDDS,而是去persist parent RDD,原因是各个windows RDDs之间有大量的重复数据,直接persist浪费空间
parent.persist(level)
this
}
override def compute(validTime: Time): Option[RDD[T]] = {
val currentWindow = new Interval(validTime - windowDuration + parent.slideDuration, validTime) //计算窗口inteval
val rddsInWindow = parent.slice(currentWindow)
val windowRDD = if (rddsInWindow.flatMap(_.partitioner).distinct.length == 1) {
new PartitionerAwareUnionRDD(ssc.sc, rddsInWindow)
} else {
new UnionRDD(ssc.sc,rddsInWindow) //本质就是把parent DStream窗口内的RDD做union
}
Some(windowRDD)
}
}
ShuffledDStream
private[streaming]
class ShuffledDStream[K: ClassTag, V: ClassTag, C: ClassTag](
parent: DStream[(K,V)],
createCombiner: V => C,
mergeValue: (C, V) => C,
mergeCombiner: (C, C) => C,
partitioner: Partitioner,
mapSideCombine: Boolean = true
) extends DStream[(K,C)] (parent.ssc) {
override def dependencies = List(parent)
override def slideDuration: Duration = parent.slideDuration
override def compute(validTime: Time): Option[RDD[(K,C)]] = {
parent.getOrCompute(validTime) match {
case Some(rdd) => Some(rdd.combineByKey[C](
createCombiner, mergeValue, mergeCombiner, partitioner, mapSideCombine))
case None => None
}
}
}
PairDStreamFunctions
以groupByKey为例,和普通Spark里面没啥区别,依赖是基于combineByKey实现
比较有特点是提供groupByKeyAndWindow,其实就是先使用WindowedDStream将windows中的RDD union,然后再使用combineByKey
/** * Extra functions available on DStream of (key, value) pairs through an implicit conversion. * Import `org.apache.spark.streaming.StreamingContext._` at the top of your program to use * these functions. */
class PairDStreamFunctions[K: ClassTag, V: ClassTag](self: DStream[(K,V)])
extends Serializable {
private[streaming] def ssc = self.ssc
private[streaming] def defaultPartitioner(numPartitions: Int = self.ssc.sc.defaultParallelism)
= {new HashPartitioner(numPartitions)}
/** * Return a new DStream by applying `groupByKey` on each RDD. The supplied * [[org.apache.spark.Partitioner]] is used to control the partitioning of each RDD. */
def groupByKey(partitioner: Partitioner): DStream[(K, Seq[V])] = {
val createCombiner = (v: V) => ArrayBuffer[V](v)
val mergeValue = (c: ArrayBuffer[V], v: V) => (c += v)
val mergeCombiner = (c1: ArrayBuffer[V], c2: ArrayBuffer[V]) => (c1 ++ c2)
combineByKey(createCombiner, mergeValue, mergeCombiner, partitioner)
.asInstanceOf[DStream[(K, Seq[V])]]
}
/** * Combine elements of each key in DStream's RDDs using custom functions. This is similar to the * combineByKey for RDDs. Please refer to combineByKey in * org.apache.spark.rdd.PairRDDFunctions in the Spark core documentation for more information. */
def combineByKey[C: ClassTag](
createCombiner: V => C,
mergeValue: (C, V) => C,
mergeCombiner: (C, C) => C,
partitioner: Partitioner,
mapSideCombine: Boolean = true): DStream[(K, C)] = {
new ShuffledDStream[K, V, C](self, createCombiner, mergeValue, mergeCombiner, partitioner,
mapSideCombine)
}
}
groupByKeyAndWindow
/** * Create a new DStream by applying `groupByKey` over a sliding window on `this` DStream. * Similar to `DStream.groupByKey()`, but applies it over a sliding window. * @param windowDuration width of the window; must be a multiple of this DStream's * batching interval * @param slideDuration sliding interval of the window (i.e., the interval after which * the new DStream will generate RDDs); must be a multiple of this * DStream's batching interval * @param partitioner partitioner for controlling the partitioning of each RDD in the new * DStream. */
def groupByKeyAndWindow(
windowDuration: Duration,
slideDuration: Duration,
partitioner: Partitioner
): DStream[(K, Seq[V])] = {
val createCombiner = (v: Seq[V]) => new ArrayBuffer[V] ++= v
val mergeValue = (buf: ArrayBuffer[V], v: Seq[V]) => buf ++= v
val mergeCombiner = (buf1: ArrayBuffer[V], buf2: ArrayBuffer[V]) => buf1 ++= buf2
self.groupByKey(partitioner)
.window(windowDuration, slideDuration) // DStream.window会将当前的dstream封装成WindowedDStream,见下面的代码
.combineByKey[ArrayBuffer[V]](createCombiner, mergeValue, mergeCombiner, partitioner)
.asInstanceOf[DStream[(K, Seq[V])]]
}
/** * Return a new DStream in which each RDD contains all the elements in seen in a * sliding window of time over this DStream. * @param windowDuration width of the window; must be a multiple of this DStream's * batching interval * @param slideDuration sliding interval of the window (i.e., the interval after which * the new DStream will generate RDDs); must be a multiple of this * DStream's batching interval */
def window(windowDuration: Duration, slideDuration: Duration): DStream[T] = {
new WindowedDStream(this, windowDuration, slideDuration)
}
updateStateByKey
/** * Return a new "state" DStream where the state for each key is updated by applying * the given function on the previous state of the key and the new values of each key. * [[org.apache.spark.Partitioner]] is used to control the partitioning of each RDD. * @param updateFunc State update function. If `this` function returns None, then * corresponding state key-value pair will be eliminated. Note, that * this function may generate a different a tuple with a different key * than the input key. It is up to the developer to decide whether to * remember the partitioner despite the key being changed. * @param partitioner Partitioner for controlling the partitioning of each RDD in the new * DStream * @param rememberPartitioner Whether to remember the paritioner object in the generated RDDs. * @tparam S State type */
def updateStateByKey[S: ClassTag](
updateFunc: (Iterator[(K, Seq[V], Option[S])]) => Iterator[(K, S)],
partitioner: Partitioner,
rememberPartitioner: Boolean
): DStream[(K, S)] = {
new StateDStream(self, ssc.sc.clean(updateFunc), partitioner, rememberPartitioner)
}
StateDStream
普通的DStream,都是直接从ParentRDD通过compute来得到当前的RDD
而StateDStream的特别之处,除了ParentRDD,还需要参考PreviousRDD,这个只存在在stream场景下,只有这个场景下,RDD之间才存在时间关系
PreviousRDD = getOrCompute(validTime - slideDuration),即在DStream的generatedRDDs上前一个时间interval上的RDD
处理函数,val finalFunc = (iterator: Iterator[(K, (Seq[V], Seq[S]))]) => { },需要3个参数,key,ParentRDD上的value,PreviousRDD上的value
处理函数需要考虑,当ParentRDD或PreviousRDD为空的情况
注意StateDStream,默认需要做persist和checkpoint
private[streaming]
class StateDStream[K: ClassTag, V: ClassTag, S: ClassTag](
parent: DStream[(K, V)],
updateFunc: (Iterator[(K, Seq[V], Option[S])]) => Iterator[(K, S)],
partitioner: Partitioner,
preservePartitioning: Boolean
) extends DStream[(K, S)](parent.ssc) {
super.persist(StorageLevel.MEMORY_ONLY_SER) // RDD persist默认设为memory,因为后面的RDD需要用到
override def dependencies = List(parent)
override def slideDuration: Duration = parent.slideDuration
override val mustCheckpoint = true // 默认需要checkpoint,需要保持状态
override def compute(validTime: Time): Option[RDD[(K, S)]] = {
// Try to get the previous state RDD
getOrCompute(validTime - slideDuration) match {
case Some(prevStateRDD) => { // If previous state RDD exists
// Try to get the parent RDD
parent.getOrCompute(validTime) match { // 既有PreviousRDD,又有ParentRDD的case
case Some(parentRDD) => { // If parent RDD exists, then compute as usual
// Define the function for the mapPartition operation on cogrouped RDD;
// first map the cogrouped tuple to tuples of required type,
// and then apply the update function
val updateFuncLocal = updateFunc
val finalFunc = (iterator: Iterator[(K, (Seq[V], Seq[S]))]) => {
val i = iterator.map(t => {
(t._1, t._2._1, t._2._2.headOption)
})
updateFuncLocal(i)
}
val cogroupedRDD = parentRDD.cogroup(prevStateRDD, partitioner) //`(k, a) cogroup (k, b)` produces k -> Seq(ArrayBuffer as, ArrayBuffer bs)
val stateRDD = cogroupedRDD.mapPartitions(finalFunc, preservePartitioning)
Some(stateRDD)
}
case None => { // If parent RDD does not exist,ParentRDD不存在
// Re-apply the update function to the old state RDD
val updateFuncLocal = updateFunc
val finalFunc = (iterator: Iterator[(K, S)]) => {
val i = iterator.map(t => (t._1, Seq[V](), Option(t._2))) // 直接把ParentRDD置空,Seq[V]()
updateFuncLocal(i)
}
val stateRDD = prevStateRDD.mapPartitions(finalFunc, preservePartitioning)
Some(stateRDD)
}
}
}
case None => { // If previous session RDD does not exist (first input data)
// Try to get the parent RDD
parent.getOrCompute(validTime) match {
case Some(parentRDD) => { // If parent RDD exists, then compute as usual,PreviousRDD为空的case,说明是第一个state RDD
// Define the function for the mapPartition operation on grouped RDD;
// first map the grouped tuple to tuples of required type,
// and then apply the update function
val updateFuncLocal = updateFunc
val finalFunc = (iterator: Iterator[(K, Seq[V])]) => {
updateFuncLocal(iterator.map(tuple => (tuple._1, tuple._2, None))) // 把PreviousRDD置为None
}
val groupedRDD = parentRDD.groupByKey(partitioner)
val sessionRDD = groupedRDD.mapPartitions(finalFunc, preservePartitioning)
//logDebug("Generating state RDD for time " + validTime + " (first)")
Some(sessionRDD)
}
case None => { // If parent RDD does not exist, then nothing to do!,previous和parent都没有,当然啥也做不了
//logDebug("Not generating state RDD (no previous state, no parent)")
None
}
}
}
}
}
}
TransformedDStream
首先这是个比较通用的operation,可以通过自定义的transformFunc,将一组parentRDDs计算出当前的RDD
需要注意的是,这些parentRDDs必须在同一个streamContext下,并且有相同的slideDuration
在DStream接口中,可以提供transform和transformWith两种,参考下面源码
private[streaming]
class TransformedDStream[U: ClassTag] (
parents: Seq[DStream[_]],
transformFunc: (Seq[RDD[_]], Time) => RDD[U]
) extends DStream[U](parents.head.ssc) {
require(parents.length > 0, "List of DStreams to transform is empty")
require(parents.map(_.ssc).distinct.size == 1, "Some of the DStreams have different contexts")
require(parents.map(_.slideDuration).distinct.size == 1,
"Some of the DStreams have different slide durations")
override def dependencies = parents.toList
override def slideDuration: Duration = parents.head.slideDuration
override def compute(validTime: Time): Option[RDD[U]] = {
val parentRDDs = parents.map(_.getOrCompute(validTime).orNull).toSeq
Some(transformFunc(parentRDDs, validTime))
}
}
/** * Return a new DStream in which each RDD is generated by applying a function * on each RDD of 'this' DStream. */
def transform[U: ClassTag](transformFunc: (RDD[T], Time) => RDD[U]): DStream[U] = {
val cleanedF = context.sparkContext.clean(transformFunc)
val realTransformFunc = (rdds: Seq[RDD[_]], time: Time) => {
assert(rdds.length == 1)
cleanedF(rdds.head.asInstanceOf[RDD[T]], time)
}
new TransformedDStream[U](Seq(this), realTransformFunc) // this,单个RDD
}
/** * Return a new DStream in which each RDD is generated by applying a function * on each RDD of 'this' DStream and 'other' DStream. */
def transformWith[U: ClassTag, V: ClassTag](
other: DStream[U], transformFunc: (RDD[T], RDD[U], Time) => RDD[V]
): DStream[V] = {
val cleanedF = ssc.sparkContext.clean(transformFunc)
val realTransformFunc = (rdds: Seq[RDD[_]], time: Time) => {
assert(rdds.length == 2)
val rdd1 = rdds(0).asInstanceOf[RDD[T]]
val rdd2 = rdds(1).asInstanceOf[RDD[U]]
cleanedF(rdd1, rdd2, time)
}
new TransformedDStream[V](Seq(this, other), realTransformFunc) // this and other,多个RDDs
}