3 Spark 集群安装

时间:2022-03-14 20:42:10

3章 Spark集群安装

3.1 Spark安装地址

1.官网地址

http://spark.apache.org/

2.文档查看地址

https://spark.apache.org/docs/2.1.1/

3.下载地址

https://spark.apache.org/downloads.html

3.2 Standalone模式安装

1)上传并解压spark安装包

[atguigu@hadoop102 sorfware]$ tar -zxvf spark-2.1.1-bin-hadoop2.7.tgz -C /opt/module/

[atguigu@hadoop102 module]$ mv spark-2.1.1-bin-hadoop2.7 spark

2)进入spark安装目录下的conf文件夹

[atguigu@hadoop102 module]$ cd spark/conf/

3)修改配置文件名称

[atguigu@hadoop102 conf]$ mv slaves.template slaves

[atguigu@hadoop102 conf]$ mv spark-env.sh.template spark-env.sh

4)修改slave文件,添加work节点:

[atguigu@hadoop102 conf]$ vim slaves

hadoop102

hadoop103

hadoop104

5)修改spark-env.sh文件,添加如下配置: 46  47 行

[atguigu@hadoop102 conf]$ vim spark-env.sh

SPARK_MASTER_HOST=hadoop102

SPARK_MASTER_PORT=7077       服务端口

6)分发spark包

[atguigu@hadoop102 module]$ xsync spark/

7)启动

[atguigu@hadoop102 spark]$ sbin/start-all.sh

[atguigu@hadoop102 spark]$ util.sh

================atguigu@hadoop102================

3330 Jps

3238 Worker

3163 Master

================atguigu@hadoop103================

2966 Jps

2908 Worker

================atguigu@hadoop104================

2978 Worker

3036 Jps

网页查看:hadoop102:8080

注意:如果遇到 “JAVA_HOME not set” 异常,可以在sbin目录下的spark-config.sh 文件中加入如下配置:

export JAVA_HOME=XXXX

8)提交任务&执行程序

[atguigu@hadoop102 spark]$ bin/spark-submit \

--class org.apache.spark.examples.SparkPi \               主类

--master spark://hadoop102:7077 \                            master

--executor-memory 1G \                任务的资源

--total-executor-cores 2 \

./examples/jars/spark-examples_2.11-2.1.1.jar \     jar包

100

./bin/spark-submit \

--class <main-class>

--master <master-url> \

--deploy-mode <deploy-mode> \

--conf <key>=<value> \

... # other options

<application-jar> \

[application-arguments]

参数说明:

--master spark://hadoop102:7077 指定Master的地址

--class: 你的应用的启动类 (如 org.apache.spark.examples.SparkPi)

--deploy-mode: 是否发布你的驱动到worker节点(cluster) 或者作为一个本地客户端 (client) (default: client)*

--conf: 任意的Spark配置属性, 格式key=value. 如果值包含空格,可以加引号“key=value”

application-jar: 打包好的应用jar,包含依赖. 这个URL在集群中全局可见。 比如hdfs:// 共享存储系统, 如果是 file:// path, 那么所有的节点的path都包含同样的jar

application-arguments: 传给main()方法的参数

--executor-memory 1G 指定每个executor可用内存为1G

--total-executor-cores 2 指定每个executor使用的cup核数为2个

该算法是利用蒙特·卡罗算法求PI

3 Spark 集群安装

9)启动spark shell

/opt/module/spark/bin/spark-shell \

--master spark://hadoop102:7077 \

--executor-memory 1g \

--total-executor-cores 2

注意:如果启动spark shell时没有指定master地址,但是也可以正常启动spark shell和执行spark shell中的程序,其实是启动了spark的local模式,该模式仅在本机启动一个进程,没有与集群建立联系。

Spark Shell中已经默认将SparkContext类初始化为对象sc。用户代码如果需要用到,则直接应用sc即可      sparksession  是sparksql 

scala> sc.textFile("./word.txt")

.flatMap(_.split(" "))

.map((_,1))

.reduceByKey(_+_)

.collect

res0: Array[(String, Int)] = Array((hive,1), (atguigu,1), (spark,1), (hadoop,1), (hbase,1))

3.3 JobHistoryServer配置

1)修改spark-default.conf.template名称

[atguigu@hadoop102 conf]$ mv spark-defaults.conf.template spark-defaults.conf

2)修改spark-default.conf文件,开启Log:

[atguigu@hadoop102 conf]$ vi spark-defaults.conf

spark.eventLog.enabled           true

spark.eventLog.dir               hdfs://hadoop102:9000/directory

注意:HDFS上的目录需要提前存在。

3)修改spark-env.sh文件,添加如下配置:

[atguigu@hadoop102 conf]$ vi spark-env.sh

export SPARK_HISTORY_OPTS="-Dspark.history.ui.port=4000

-Dspark.history.retainedApplications=3

-Dspark.history.fs.logDirectory=hdfs://hadoop102:9000/directory"

参数描述:

spark.eventLog.dir:Application在运行过程中所有的信息均记录在该属性指定的路径下;

spark.history.ui.port=4000  调整WEBUI访问的端口号为4000

spark.history.fs.logDirectory=hdfs://hadoop102:9000/directory  配置了该属性后,在start-history-server.sh时就无需再显式的指定路径,Spark History Server页面只展示该指定路径下的信息

spark.history.retainedApplications=3   指定保存Application历史记录的个数,如果超过这个值,旧的应用程序信息将被删除,这个是内存中的应用数,而不是页面上显示的应用数。

4)分发配置文件

[atguigu@hadoop102 conf]$ xsync spark-defaults.conf

[atguigu@hadoop102 conf]$ xsync spark-env.sh

5)启动历史服务

[atguigu@hadoop102 spark]$ sbin/start-history-server.sh

6)再次执行任务长度。

[atguigu@hadoop102 spark]$ bin/spark-submit \

--class org.apache.spark.examples.SparkPi \

--master spark://hadoop102:7077 \

--executor-memory 1G \

--total-executor-cores 2 \

./examples/jars/spark-examples_2.11-2.1.1.jar \

100

7)查看历史服务

hadoop102:4000

3 Spark 集群安装

3.4 HA配置

3 Spark 集群安装

1)zookeeper正常安装并启动

2)修改spark-env.sh文件添加如下配置:

[atguigu@hadoop102 conf]$ vi spark-env.sh

注释掉如下内容:

#SPARK_MASTER_HOST=hadoop102

#SPARK_MASTER_PORT=7077

添加上如下内容:

export SPARK_DAEMON_JAVA_OPTS="

-Dspark.deploy.recoveryMode=ZOOKEEPER

-Dspark.deploy.zookeeper.url=hadoop102,hadoop103,hadoop104

-Dspark.deploy.zookeeper.dir=/spark"

3)分发配置文件

[atguigu@hadoop102 conf]$ xsync spark-env.sh

4)在hadoop102上启动全部节点

[atguigu@hadoop102 spark]$ sbin/start-all.sh

5)在hadoop103上单独启动master节点88

[atguigu@hadoop103 spark]$ sbin/start-master.sh

6)spark HA集群访问

/opt/module/spark/bin/spark-shell \

--master spark://hadoop102:7077,hadoop103:7077 \   单独指定102也能

--executor-memory 2g \

--total-executor-cores 2

3.5 Yarn模式安装

1)修改hadoop配置文件yarn-site.xml,添加如下内容:

[atguigu@hadoop102 hadoop]$ vi yarn-site.xml

<!--是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认是true -->

<property>

<name>yarn.nodemanager.pmem-check-enabled</name>

<value>false</value>

</property>

<!--是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认是true -->

<property>

<name>yarn.nodemanager.vmem-check-enabled</name>

<value>false</value>

</property>

2)修改spark-env.sh,添加如下配置:

[atguigu@hadoop102 conf]$ vi spark-env.sh

YARN_CONF_DIR=/opt/module/hadoop-2.7.2/etc/hadoop

HADOOP_CONF_DIR=/opt/module/hadoop-2.7.2/etc/hadoop

3)分发配置文件

[atguigu@hadoop102 conf]$ xsync /opt/module/hadoop-2.7.2/etc/hadoop/yarn-site.xml

[atguigu@hadoop102 conf]$ xsync spark-env.sh

4)执行一个程序

[atguigu@hadoop102 spark]$ bin/spark-submit \

--class org.apache.spark.examples.SparkPi \

--master yarn \

--deploy-mode client \

./examples/jars/spark-examples_2.11-2.1.1.jar \

100

注意:在提交任务之前需启动HDFS以及YARN集群。

3 Spark 集群安装

1)zookeeper正常安装并启动

2)修改spark-env.sh文件添加如下配置:

[atguigu@hadoop102 conf]$ vi spark-env.sh

注释掉如下内容:

#SPARK_MASTER_HOST=hadoop102

#SPARK_MASTER_PORT=7077

添加上如下内容:

export SPARK_DAEMON_JAVA_OPTS="

-Dspark.deploy.recoveryMode=ZOOKEEPER

-Dspark.deploy.zookeeper.url=hadoop102,hadoop103,hadoop104

-Dspark.deploy.zookeeper.dir=/spark"

3)分发配置文件

[atguigu@hadoop102 conf]$ xsync spark-env.sh

4)在hadoop102上启动全部节点

[atguigu@hadoop102 spark]$ sbin/start-all.sh

5)在hadoop103上单独启动master节点88

[atguigu@hadoop103 spark]$ sbin/start-master.sh

6)spark HA集群访问

/opt/module/spark/bin/spark-shell \

--master spark://hadoop102:7077,hadoop103:7077 \   单独指定102也能

--executor-memory 2g \

--total-executor-cores 2

3.5 Yarn模式安装

1)修改hadoop配置文件yarn-site.xml,添加如下内容:

[atguigu@hadoop102 hadoop]$ vi yarn-site.xml

<!--是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认是true -->

<property>

<name>yarn.nodemanager.pmem-check-enabled</name>

<value>false</value>

</property>

<!--是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认是true -->

<property>

<name>yarn.nodemanager.vmem-check-enabled</name>

<value>false</value>

</property>

2)修改spark-env.sh,添加如下配置:

[atguigu@hadoop102 conf]$ vi spark-env.sh

YARN_CONF_DIR=/opt/module/hadoop-2.7.2/etc/hadoop

HADOOP_CONF_DIR=/opt/module/hadoop-2.7.2/etc/hadoop

3)分发配置文件

[atguigu@hadoop102 conf]$ xsync /opt/module/hadoop-2.7.2/etc/hadoop/yarn-site.xml

[atguigu@hadoop102 conf]$ xsync spark-env.sh

4)执行一个程序

[atguigu@hadoop102 spark]$ bin/spark-submit \

--class org.apache.spark.examples.SparkPi \

--master yarn \

--deploy-mode client \

./examples/jars/spark-examples_2.11-2.1.1.jar \

100

注意:在提交任务之前需启动HDFS以及YARN集群。