BZOJ_2443_[Usaco2011 Open]奇数度数 _并查集、
Description
奶牛们遭到了进攻!在他们的*里,有N(1 <= N <=50,000)个城市,由M(1 <= M <= 100,000)条无向的道路连
接城市A_i和B_i(1 <= A_i <= N;1 <= B_i <= N;A_i != B_i; 不会有重复的道路出现)。然而,整个*不一定
是连通的——有一些城市无法到达另外一些城市。入侵者想得到*的地图。(入侵者很傻,因此,他们的绘制
地图的方法是去访问每一条边,T_T)。奶牛想要折磨一下入侵者,使得他们尽可能难地完成地图绘制。因此,奶牛
会破坏若干条道路。请你帮助奶牛找到一个道路的子集,使得每条边每个点的度数为奇数。或者输出不存在这样的
一个子集。(奶牛的图论学得真好.= =||)举个例子,考虑下面的*:
1---2
\ /
3---4
如果我们保留道路1-3,2-3和3-4,破坏道路1-2,那么城市1,2,4都只有一条边相连,城市3有3条边相连:
1 2
\ /
3---4
Input
* 第一行:两个用空格隔开的整数:N和M
* 第二行到M+1行:第i+1行有两个空格隔开的整数A_i和
Output
* 第一行: 一个整数表示需要保留的道路数量
* 第二到K+1行:每行一个数表示保留的道路的编号,范围是1...M。
Sample Input
4 4
1 2
2 3
3 1
3 4
1 2
2 3
3 1
3 4
Sample Output
3
2
3
4
2
3
4
直接说结论:任意拽出一棵生成树,把非树边扔掉,再在树的内部树形DP判断是否有解。
证明一下:对于一条非树边<u,v>,如果可能的构造法包含它,我们可以让<u,v>路径上所有边更改选择状态从而不选这条边,路径上的点的奇偶性不变。
然后并查集维护一下即可。
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 50050
#define M 100050
using namespace std;
inline char nc() {
static char buf[100000],*p1,*p2;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
int rd() {
int x=0; char s=nc();
while(s<'0'||s>'9') s=nc();
while(s>='0'&&s<='9') x=(x<<3)+(x<<1)+s-'0',s=nc();
return x;
}
char pbuf[100000],*pp=pbuf;
void push(const char c) {
if(pp-pbuf==100000) fwrite(pbuf,1,100000,stdout),pp=pbuf;
*pp++=c;
}
void write(int x) {
static int sta[35];
int top=0;
do{sta[top++]=x%10,x/=10;}while(x);
while(top) push(sta[--top]+'0');
}
int head[N],to[N<<1],nxt[N<<1],val[N<<1],cnt;
int is[M],tot,n,m,fa[N],f[N],vis[N];
int find(int x) {return fa[x]==x?x:fa[x]=find(fa[x]);}
void add(int u,int v,int w) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; val[cnt]=w;
}
void dfs(int x,int y) {
int i,now=0; vis[x]=1;
for(i=head[x];i;i=nxt[i]) {
if(to[i]!=y) {
dfs(to[i],x);
if(f[to[i]]) now++;
else is[val[i]]=1,tot--;
}
}
f[x]=!(now&1);
}
int main() {
n=rd(); m=rd(); tot=m;
register int i,x,y;
for(i=1;i<=n;i++) fa[i]=i;
for(i=1;i<=m;i++) {
x=rd(); y=rd();
int dx=find(x),dy=find(y);
if(dx!=dy) add(x,y,i),add(y,x,i),fa[dx]=dy;
else is[i]=1,tot--;
}
for(i=1;i<=n;i++) {
if(!vis[i]) {
dfs(i,0); if(f[i]) {puts("-1"); return 0;}
}
}
write(tot); push('\n');
for(i=1;i<=m;i++) if(!is[i]) write(i),push('\n');
fwrite(pbuf,1,pp-pbuf,stdout);
}