上一篇:MiniGUI源码分析--hellowworld(2):主窗口诞生的秘密
这本篇中,将重点介绍MiniGUI的消息。
在MiniGUI中,有以下几种消息:
1. 同步消息,由SendMessage、SendSyncMessage发送的同步消息,消息将被立即处理,消息的返回值将通过函数的返回值返回;
2. Notify消息,通过SendNotifyMessage发送 。这是一个异步的消息,但是一定能够被处理
3. Post消息,通过PostMessage发送,这也是一个异步消息,可能会丢失
4. 特殊的消息,包括MSG_PAINT和MSG_TIMER,MSG_QUIT,这三个消息是系统消息,在消息队列中,实际上以标志位的方式存在。MSG_PAINT消息可以由InvalidateRect和 UpdateRect两个函数引起。而MSG_TIMER消息,则必须由系统产生。MSG_QUIT只能通过PostQuitMessage产生
消息的优先级是这样定义的:MSG_QUIT > 同步消息 > Notify消息 > Post消息 > MSG_PAINT > MSG_TIMER消息。
在上一篇中,在创建一个窗口时,我们使用了函数 InitMsgQueueThisThread(3.0版本的为mg_InitMsgQueueThisThread)和GetMsgQueueThisThread,前者为当前线程创建一个消息队列(仅限线程版,进程版和standalone版都只有一个消息队列),后者是获取当前线程的消息队列。
InitMsgQueueThisThread函数本身很简单。它主要是创建和初始化MSGQUEUE结构体。(_LITE_VERSION代表的是进程版和standalone版。在3.0中,这个宏已经被规范为_MGRM_PROCESSES 和_MGRM_STANDALONE。)
struct _MSGQUEUE
{
DWORD dwState; // message queue states
#ifndef _LITE_VERSION
pthread_mutex_t lock; // lock
sem_t wait; // the semaphore for wait message
sem_t sync_msg; // the semaphore for sync message
#endif
PQMSG pFirstNotifyMsg; // head of the notify message queue
PQMSG pLastNotifyMsg; // tail of the notify message queue
#ifndef _LITE_VERSION
PSYNCMSG pFirstSyncMsg; // head of the sync message queue
PSYNCMSG pLastSyncMsg; // tail of the sync message queue
#else
IDLEHANDLER OnIdle; // Idle handler
#endif
#ifndef _LITE_VERSION
PMAINWIN pRootMainWin; // The root main window of this message queue.
#endif
MSG* msg; /* post message buffer */
int len; /* buffer len */
int readpos, writepos; /* positions for reading and writing */
int FirstTimerSlot; /* the first timer slot to be checked */
DWORD TimerMask; /* timer slots mask */
int loop_depth; /* message loop depth, for dialog boxes. */
};
#define QS_NOTIFYMSG 0x10000000
#ifndef _LITE_VERSION
#define QS_SYNCMSG 0x20000000
#else
#define QS_DESKTIMER 0x20000000
#endif
#define QS_POSTMSG 0x40000000
#define QS_QUIT 0x80000000
#define QS_INPUT 0x01000000
#define QS_PAINT 0x02000000
#define QS_TIMER 0x0000FFFF
#define QS_EMPTY 0x00000000
QS_NOTIFYMSG 标志表示消息队列中有待处理的notify消息。同理,QS_SYNCMSG表示有待处理的同步消息;QS_POSTMSG表示有待处理的post消息。
QS_QUIT、QS_PAINT和QS_TIMER分别对应MSG_QUIT, MSG_PAINT和MSG_TIMER。
同步消息在线程版,分成两种情况来实现:1)如果消息发送者和消息接受者在同一个线程,则直接调用窗口的窗口过程;2)如果不在同一个线程,则使用同步消息,来传递。
在非线程版,则统一使用第一种方式。
所以,在线程版的MSGQUEUE结构体中,增加了sync_msg, pFirstSyncMsg和pLastSyncMsg。其中,wait变量的作用是为了唤醒消息循环。
请看SendMessage代码
int GUIAPI SendMessage (HWND hWnd, int iMsg, WPARAM wParam, LPARAM lParam)BE_IS_THREAD宏通过hWnd的住窗口内保持的线程句柄来判断的。
{
WNDPROC WndProc;
MG_CHECK_RET (MG_IS_WINDOW(hWnd), -1);
#ifndef _LITE_VERSION
if (!BE_THIS_THREAD(hWnd))
return SendSyncMessage (hWnd, iMsg, wParam, lParam);
#endif /* !_LITE_VERSION */
if ( !(WndProc = GetWndProc(hWnd)) )
return ERR_INV_HWND;
return (*WndProc)(hWnd, iMsg, wParam, lParam);
当不是一个线程时,就调用SendSyncMessage。这个函数
int SendSyncMessage (HWND hWnd, int msg, WPARAM wParam, LPARAM lParam)
{
PMSGQUEUE pMsgQueue, thinfo = NULL;
SYNCMSG SyncMsg;
sem_t sync_msg;
if (!(pMsgQueue = GetMsgQueue(hWnd)))
return ERR_INV_HWND;
if ((thinfo = GetMsgQueueThisThread ())) {
/* avoid to create a new semaphore object */
SyncMsg.sem_handle = &thinfo->sync_msg;
}
else {
/* this is not a GUI thread */
sem_init (&sync_msg, 0, 0);
SyncMsg.sem_handle = &sync_msg;
}
/* queue the sync message. */
SyncMsg.Msg.hwnd = hWnd;
SyncMsg.Msg.message = msg;
SyncMsg.Msg.wParam = wParam;
SyncMsg.Msg.lParam = lParam;
SyncMsg.retval = ERR_MSG_CANCELED;
SyncMsg.pNext = NULL;
LOCK_MSGQ (pMsgQueue);
if (pMsgQueue->pFirstSyncMsg == NULL) {
pMsgQueue->pFirstSyncMsg = pMsgQueue->pLastSyncMsg = &SyncMsg;
}
else {
pMsgQueue->pLastSyncMsg->pNext = &SyncMsg;
pMsgQueue->pLastSyncMsg = &SyncMsg;
}
pMsgQueue->dwState |= QS_SYNCMSG;
UNLOCK_MSGQ (pMsgQueue);
POST_MSGQ (pMsgQueue);
/* suspend until the message has been handled. */
if (sem_wait (SyncMsg.sem_handle) < 0) {
fprintf (stderr,
"SendSyncMessage: thread is interrupted abnormally!\n");
}
if (thinfo == NULL)
sem_destroy (&sync_msg);
return SyncMsg.retval;
}
当把消息添加到队里中后,通过POST_MSGQ宏,唤醒消息循环,该宏的定义是:
#define POST_MSGQ(pMsgQueue) \
{ \
int sem_value; \
/* Signal that the msg queue contains one more element for reading */ \
sem_getvalue (&(pMsgQueue)->wait, &sem_value); \
if (sem_value <= 0) \
sem_post(&(pMsgQueue)->wait); \
}
可以看到wait信号量被消息循环线程等待。
最后,该函数等待消息循环处理该消息并处罚事先设置的sem_handle信号量。
由于两个线程存在相互等待的情况,所以,需要非常小心的避免引起死锁。
SendSyncMessage函数时不能在一个线程中重入的。否则就会引起死锁。但是不同的线程可以同时调用该函数。
同步消息应用非常广泛,是用到最多的一种消息。但是,在一些方面,却不太适合。如,从底层发送的一些事件,特别是硬件事件;当窗口要再一个很深的消息中删除自己时,如果直接用同步消息,会导致该窗口后续的消息使用了非法指针等等。
所以,这个时候,就应该使用Notify消息。
Notify消息使用SendNotifyMessage发送,它的实现是:
int GUIAPI SendNotifyMessage (HWND hWnd, int iMsg, WPARAM wParam, LPARAM lParam)
{
PMSGQUEUE pMsgQueue;
PQMSG pqmsg;
MG_CHECK_RET (MG_IS_WINDOW(hWnd), ERR_INV_HWND);
if (!(pMsgQueue = GetMsgQueue(hWnd)))
return ERR_INV_HWND;
pqmsg = QMSGAlloc();
LOCK_MSGQ (pMsgQueue);
/* queue the notification message. */
pqmsg->Msg.hwnd = hWnd;
pqmsg->Msg.message = iMsg;
pqmsg->Msg.wParam = wParam;
pqmsg->Msg.lParam = lParam;
pqmsg->next = NULL;
if (pMsgQueue->pFirstNotifyMsg == NULL) {
pMsgQueue->pFirstNotifyMsg = pMsgQueue->pLastNotifyMsg = pqmsg;
}
else {
pMsgQueue->pLastNotifyMsg->next = pqmsg;
pMsgQueue->pLastNotifyMsg = pqmsg;
}
pMsgQueue->dwState |= QS_NOTIFYMSG;
UNLOCK_MSGQ (pMsgQueue);
#ifndef _LITE_VERSION
if ( !BE_THIS_THREAD(hWnd) )
POST_MSGQ(pMsgQueue);
#endif
return ERR_OK;
}
不同于SendSyncMessage,该消息时异步的。把消息放入队列后,就立即退出。所以,它是通过QMSGAlloc分配的消息。这个时候, 如果在消息的wParam和lParam放入指针,就需要非常小心的在合适时机释放内存,以避免内存泄露的产生。
PostMessage在应用层使用不是很多,不过,在系统内部常常用来发送键盘和鼠标消息,这一点,会在后面详细谈到。因为键盘和鼠标消息如果不能被及时处理,就需要丢掉了。
int GUIAPI PostMessage (HWND hWnd, int iMsg, WPARAM wParam, LPARAM lParam)
{
PMSGQUEUE pMsgQueue;
MSG msg;
if (!(pMsgQueue = GetMsgQueue(hWnd)))
return ERR_INV_HWND;
if (iMsg == MSG_PAINT) {
LOCK_MSGQ (pMsgQueue);
pMsgQueue->dwState |= QS_PAINT;
UNLOCK_MSGQ (pMsgQueue);
#ifndef _LITE_VERSION
if ( !BE_THIS_THREAD(hWnd) )
POST_MSGQ(pMsgQueue);
#endif
return ERR_OK;
}
msg.hwnd = hWnd;
msg.message = iMsg;
msg.wParam = wParam;
msg.lParam = lParam;
if (!QueueMessage(pMsgQueue, &msg))
return ERR_QUEUE_FULL;
return ERR_OK;
}
它与SendNotifyMessage的区别主要在于:
对MSG_PAINT消息做了特殊处理,piant消息仅仅是增加了标志位
QueueMessage函数的是从固定大小的队列中获取消息,然后处理的:
BOOL QueueMessage (PMSGQUEUE msg_que, PMSG msg)
{
LOCK_MSGQ(msg_que);
/* check whether the last message is MSG_MOUSEMOVE */
if (msg->message == MSG_MOUSEMOVE && msg->hwnd == HWND_DESKTOP
&& msg_que->readpos != msg_que->writepos) {
PMSG last_msg;
if (msg_que->writepos == 0)
last_msg = msg_que->msg + msg_que->len - 1;
else
last_msg = msg_que->msg + msg_que->writepos - 1;
if (last_msg->message == MSG_MOUSEMOVE
&& last_msg->wParam == msg->wParam
&& last_msg->hwnd == msg->hwnd) {
last_msg->lParam = msg->lParam;
last_msg->time = msg->time;
goto ret;
}
}
if ((msg_que->writepos + 1) % msg_que->len == msg_que->readpos) {
UNLOCK_MSGQ(msg_que);
return FALSE;
}
/* Write the data and advance write pointer */
msg_que->msg [msg_que->writepos] = *msg;
msg_que->writepos++;
if (msg_que->writepos >= msg_que->len) msg_que->writepos = 0;
ret:
msg_que->dwState |= QS_POSTMSG;
UNLOCK_MSGQ (msg_que);
#ifndef _LITE_VERSION
if (!BE_THIS_THREAD (msg->hwnd))
POST_MSGQ (msg_que);
#endif
return TRUE;
}
readpos和writepos一个是队列头一个是队列尾,MSGQUEUE中的msg是一个数组,在InitMsgQueue分配了指定长度的数组。
我们知道,消息循环都是这么写的:
while (GetMessage(&Msg, hMainWnd)) {
TranslateMessage(&Msg);
DispatchMessage(&Msg);
}
GetMessage函数,它的实现是
static inline BOOL GUIAPI GetMessage (PMSG pMsg, HWND hWnd)
{
return PeekMessageEx (pMsg, hWnd, 0, 0, TRUE, PM_REMOVE);
}
PeekMessageEx函数时从消息队列中检出消息。它的实现
BOOL PeekMessageEx (PMSG pMsg, HWND hWnd, int iMsgFilterMin, int iMsgFilterMax,
BOOL bWait, UINT uRemoveMsg)
{
PMSGQUEUE pMsgQueue;
PQMSG phead;
if (!pMsg || (hWnd != HWND_DESKTOP && !MG_IS_MAIN_WINDOW(hWnd)))
return FALSE;
#ifndef _LITE_VERSION
if (!(pMsgQueue = GetMsgQueueThisThread ()))
return FALSE;
#else
pMsgQueue = __mg_dsk_msg_queue;
#endif
memset (pMsg, 0, sizeof(MSG));
checkagain:
LOCK_MSGQ (pMsgQueue);
if (pMsgQueue->dwState & QS_QUIT) {
pMsg->hwnd = hWnd;
pMsg->message = MSG_QUIT;
pMsg->wParam = 0;
pMsg->lParam = 0;
SET_PADD (NULL);
if (uRemoveMsg == PM_REMOVE) {
pMsgQueue->loop_depth --;
if (pMsgQueue->loop_depth == 0)
pMsgQueue->dwState &= ~QS_QUIT;
}
UNLOCK_MSGQ (pMsgQueue);
return FALSE;
}
/* Dealing with sync messages before notify messages is better ? */
#ifndef _LITE_VERSION
if (pMsgQueue->dwState & QS_SYNCMSG) {
if (pMsgQueue->pFirstSyncMsg) {
*pMsg = pMsgQueue->pFirstSyncMsg->Msg;
SET_PADD (pMsgQueue->pFirstSyncMsg);
if (IS_MSG_WANTED(pMsg->message)) {
if (uRemoveMsg == PM_REMOVE) {
pMsgQueue->pFirstSyncMsg = pMsgQueue->pFirstSyncMsg->pNext;
}
UNLOCK_MSGQ (pMsgQueue);
return TRUE;
}
}
else
pMsgQueue->dwState &= ~QS_SYNCMSG;
}
#endif
if (pMsgQueue->dwState & QS_NOTIFYMSG) {
if (pMsgQueue->pFirstNotifyMsg) {
phead = pMsgQueue->pFirstNotifyMsg;
*pMsg = phead->Msg;
SET_PADD (NULL);
if (IS_MSG_WANTED(pMsg->message)) {
if (uRemoveMsg == PM_REMOVE) {
pMsgQueue->pFirstNotifyMsg = phead->next;
FreeQMSG (phead);
}
UNLOCK_MSGQ (pMsgQueue);
return TRUE;
}
}
else
pMsgQueue->dwState &= ~QS_NOTIFYMSG;
}
if (pMsgQueue->dwState & QS_POSTMSG) {
if (pMsgQueue->readpos != pMsgQueue->writepos) {
*pMsg = pMsgQueue->msg[pMsgQueue->readpos];
SET_PADD (NULL);
if (IS_MSG_WANTED(pMsg->message)) {
CheckCapturedMouseMessage (pMsg);
if (uRemoveMsg == PM_REMOVE) {
pMsgQueue->readpos++;
if (pMsgQueue->readpos >= pMsgQueue->len)
pMsgQueue->readpos = 0;
}
UNLOCK_MSGQ (pMsgQueue);
return TRUE;
}
}
else
pMsgQueue->dwState &= ~QS_POSTMSG;
}
/*
* check invalidate region of the windows
*/
if (pMsgQueue->dwState & QS_PAINT && IS_MSG_WANTED(MSG_PAINT)) {
PMAINWIN pHostingRoot;
HWND hNeedPaint;
PMAINWIN pWin;
#ifndef _LITE_VERSION
/* REMIND this */
if (hWnd == HWND_DESKTOP) {
pMsg->hwnd = hWnd;
pMsg->message = MSG_PAINT;
pMsg->wParam = 0;
pMsg->lParam = 0;
SET_PADD (NULL);
if (uRemoveMsg == PM_REMOVE) {
pMsgQueue->dwState &= ~QS_PAINT;
}
UNLOCK_MSGQ (pMsgQueue);
return TRUE;
}
#endif
pMsg->message = MSG_PAINT;
pMsg->wParam = 0;
pMsg->lParam = 0;
SET_PADD (NULL);
#ifdef _LITE_VERSION
pHostingRoot = __mg_dsk_win;
#else
pHostingRoot = pMsgQueue->pRootMainWin;
#endif
if ( (hNeedPaint = msgCheckHostedTree (pHostingRoot)) ) {
pMsg->hwnd = hNeedPaint;
pWin = (PMAINWIN) hNeedPaint;
pMsg->lParam = (LPARAM)(&pWin->InvRgn.rgn);
UNLOCK_MSGQ (pMsgQueue);
return TRUE;
}
/* no paint message */
pMsgQueue->dwState &= ~QS_PAINT;
}
/*
* handle timer here
*/
#ifdef _LITE_VERSION
if (pMsgQueue->dwState & QS_DESKTIMER) {
pMsg->hwnd = HWND_DESKTOP;
pMsg->message = MSG_TIMER;
pMsg->wParam = 0;
pMsg->lParam = 0;
if (uRemoveMsg == PM_REMOVE) {
pMsgQueue->dwState &= ~QS_DESKTIMER;
}
return TRUE;
}
#endif
if (pMsgQueue->TimerMask && IS_MSG_WANTED(MSG_TIMER)) {
int slot;
TIMER* timer;
#ifndef _LITE_VERSION
if (hWnd == HWND_DESKTOP) {
pMsg->hwnd = hWnd;
pMsg->message = MSG_TIMER;
pMsg->wParam = 0;
pMsg->lParam = 0;
SET_PADD (NULL);
if (uRemoveMsg == PM_REMOVE) {
pMsgQueue->TimerMask = 0;
}
UNLOCK_MSGQ (pMsgQueue);
return TRUE;
}
#endif
/* get the first expired timer slot */
slot = pMsgQueue->FirstTimerSlot;
do {
if (pMsgQueue->TimerMask & (0x01 << slot))
break;
slot ++;
slot %= DEF_NR_TIMERS;
if (slot == pMsgQueue->FirstTimerSlot) {
slot = -1;
break;
}
} while (TRUE);
pMsgQueue->FirstTimerSlot ++;
pMsgQueue->FirstTimerSlot %= DEF_NR_TIMERS;
if ((timer = __mg_get_timer (slot))) {
unsigned int tick_count = timer->tick_count;
timer->tick_count = 0;
pMsgQueue->TimerMask &= ~(0x01 << slot);
if (timer->proc) {
BOOL ret_timer_proc;
/* unlock the message queue when calling timer proc */
UNLOCK_MSGQ (pMsgQueue);
/* calling the timer callback procedure */
ret_timer_proc = timer->proc (timer->hWnd,
timer->id, tick_count);
/* lock the message queue again */
LOCK_MSGQ (pMsgQueue);
if (!ret_timer_proc) {
/* remove the timer */
__mg_remove_timer (timer, slot);
}
}
else {
pMsg->message = MSG_TIMER;
pMsg->hwnd = timer->hWnd;
pMsg->wParam = timer->id;
pMsg->lParam = tick_count;
SET_PADD (NULL);
UNLOCK_MSGQ (pMsgQueue);
return TRUE;
}
}
}
UNLOCK_MSGQ (pMsgQueue);
#ifndef _LITE_VERSION
if (bWait) {
/* no message, wait again. */
sem_wait (&pMsgQueue->wait);
goto checkagain;
}
#else
/* no message, idle */
if (bWait) {
pMsgQueue->OnIdle (pMsgQueue);
goto checkagain;
}
#endif
/* no message */
return FALSE;
}
内容很长,但是可以分成两部分看:第一步部分,是获取消息的部分;第二部分,是等待消息循环的部分。
第二部分,请看函数最后部分,if(bWait)的代码。对于线程版,它就是通过wait信号量,让自己进入休眠。对于进程版和standalone版,它调用OnIdle回调。OnIdle回调在进程版中和线程版转化为对端口的select方法调用,从而导致一个较短时间的休眠。
重点看第一部分,它按照优先级,依次取MSG_QUIT消息,同步消息,notify消息,post消息,和MSG_PAINT消息和MSG_TIMER消息。
普通的消息都比较简单。所以我们重点介绍MSG_PAINT消息和MSG_TIMER消息。
MSG_PAINT消息,其重点是检查了QS_PAINT标志。当有QS_PAINT标志的时候,它实际上通过 msgCheckHostedTree函数,来检查那些窗口是需要重绘的。那些需要重绘的窗口,就会产生MSG_PAINT消息。
msgCheckHostedTree函数,其实现是:
static HWND msgCheckHostedTree (PMAINWIN pHosting)msgCheckInvalidRegion函数判断窗口是否存在无效区域,如果存在,则是需要重绘,否则,它会继续查找下个hosted窗口。
{
HWND hNeedPaint;
PMAINWIN pHosted;
if ( (hNeedPaint = msgCheckInvalidRegion (pHosting)) )
return hNeedPaint;
pHosted = pHosting->pFirstHosted;
while (pHosted) {
if ( (hNeedPaint = msgCheckHostedTree (pHosted)) )
return hNeedPaint;
pHosted = pHosted->pNextHosted;
}
return 0;
}
这里面涉及很多点:
- MiniGUI窗口的管理方式,是主窗口和普通窗口分离的。主窗口采用hosting的链表树方式管理,可以遍历到所有的主窗口。而每个主窗口则是一个树的根节点,通过parent-child关系管理所有的子窗口。所以,msgCheckHostedTree是遍历主窗口用的,而msgCheckInvalidRegion是遍历子窗口用的。注意这两个函数的返回值,都是需要重绘的窗口句柄。
- 当找到一个需要重绘的窗口句柄的时候,它就返回该窗口句柄。返回后,消息循环接下来回调用DispatchMessage,该函数会调用到窗口过程。在窗口过程中,处理MSG_PAINT消息时,我们必须用BeginPaint和EndPaint来获取绘制的DC。这一点非常重要,因为在BeginPaint中,会清除无效区域。当无效区域被清除后,下次在此调用msgCheckHostedTree和msgCheckInvalidRegion的时候,该窗口的子窗口或者兄弟窗口就会被检测。一直等到所有窗口被检测完毕后,整个绘制过程才算完成。在此过程中,MiniGUI会多次遍历所有的窗口。
- msgCheckHostedTree和msgCheckInvalidRegion相结合使用,是通过递归的方法进行的一个先根遍历法,这个方法,总是能够保证父窗口先于子窗口被绘制,从而保证了窗口之间以正确的次序被绘制。
tatic HWND msgCheckInvalidRegion (PMAINWIN pWin)
{
PCONTROL pCtrl = (PCONTROL)pWin;
HWND hwnd;
if (pCtrl->InvRgn.rgn.head)
return (HWND)pCtrl;
pCtrl = pCtrl->children;
while (pCtrl) {
if ((hwnd = msgCheckInvalidRegion ((PMAINWIN) pCtrl)))
return hwnd;
pCtrl = pCtrl->next;
}
return 0;
}
他是通过判断窗口结构体中的 InvRgn的区域是否为空来实现的。它的实现,是一个典型的先根遍历法,可以保证窗口的绘制次序。
MSG_TIMER消息,在MiniGUI中是一个很特别的消息。它是通过一个Timer服务来支持的。
我们知道,MiniGUI的Timer消息,通过SetTimer和SetTimerEx来启动的。SetTimerEx 函数是主要实现Timer安装的。
在MiniGUI中,Timer的相关信息,通过一个Timer slot来保存的。timer slot实际上一一组数组,数组内的元素可以被重复利用。通过MSGQUEUE中的TimerMark变量,保存那些数组元素被使用了。 TimerMark是用掩码来表示 timerslot的索引的。所以,在MiniGUI最多能够安装32个timer,就是因为TimerMark变量时32位的。
在src/kernel/timer.c文件中,定义了静态变量
static TIMER *timerstr[DEF_NR_TIMERS];其中DEF_NR_TIMERS被定义为32. TIMER结构体定义是:
typedef struct _timer {一个Timer会和指定的窗口、和窗口依赖的消息队列相关。
HWND hWnd;
int id;
unsigned int speed;
unsigned int count;
TIMERPROC proc;
unsigned int tick_count;
PMSGQUEUE msg_queue;
} TIMER;
当调用SetTimerEx时,实际上,就是使用这样的timer的slot:
BOOL GUIAPI SetTimerEx (HWND hWnd, int id, unsigned int speed,
TIMERPROC timer_proc)
{
int i;
PMSGQUEUE pMsgQueue;
int slot = -1;
#ifndef _LITE_VERSION
if (!(pMsgQueue = GetMsgQueueThisThread ()))
return FALSE;
#else
pMsgQueue = __mg_dsk_msg_queue;
#endif
TIMER_LOCK ();
/* Is there an empty timer slot? */
for (i=0; i<DEF_NR_TIMERS; i++) {
if (timerstr[i] == NULL) {
if (slot < 0)
slot = i;
}
else if (timerstr[i]->hWnd == hWnd && timerstr[i]->id == id) {
goto badret;
}
}
if (slot < 0 || slot == DEF_NR_TIMERS)
goto badret ;
timerstr[slot] = malloc (sizeof (TIMER));
timerstr[slot]->speed = speed;
timerstr[slot]->hWnd = hWnd;
timerstr[slot]->id = id;
timerstr[slot]->count = 0;
timerstr[slot]->proc = timer_proc;
timerstr[slot]->tick_count = 0;
timerstr[slot]->msg_queue = pMsgQueue;
#if defined(_LITE_VERSION) && !defined(_STAND_ALONE)
if (!mgIsServer)
__mg_set_select_timeout (USEC_10MS * speed);
#endif
TIMER_UNLOCK ();
return TRUE;
badret:
TIMER_UNLOCK ();
return FALSE;
}
前面的章节中,在讲到MiniGUI初始化的时候,我们提到过,线程版本中,timer会单独使用一个线程,来定时发出消息。该线程入口是TimerEntry,它通过_os_timer_loop来处理线程:
static inline void _os_timer_loop (void)
{
while (1) {
__mg_os_time_delay (10);
__mg_timer_action (NULL);
}
}
static void* TimerEntry (void* data)
{
if (!InitTimer ()) {
fprintf (stderr, "TIMER: Init Timer failure, exit!\n");
#ifndef __NOUNIX__
exit (1);
#endif
return NULL;
}
sem_post ((sem_t*)data);
_os_timer_loop ();
return NULL;
}
static void __mg_timer_action (void *data)
{
#if defined(_LITE_VERSION) && !defined(_STAND_ALONE)
SHAREDRES_TIMER_COUNTER += 1;
#else
#if defined(__uClinux__) && defined(_STAND_ALONE)
__mg_timer_counter += 10;
#else
__mg_timer_counter ++;
#endif
#endif
#ifndef _LITE_VERSION
/* alert desktop */
AlertDesktopTimerEvent ();
#endif
}
关键函数是AlertDesktopTimerEvent:
static inline void我们知道,Desktop是单独一个线程运行的,其入口是DesktopMain,其核心也是一个消息循环。关键还在于PeekMessageEx中,请注意其中的代码:
AlertDesktopTimerEvent (void)
{
__mg_dsk_msg_queue->TimerMask = 1;
POST_MSGQ(__mg_dsk_msg_queue);
}
if (pMsgQueue->TimerMask && IS_MSG_WANTED(MSG_TIMER)) {实际上,它发给Desktop的窗口过程的MSG_TIMER处理。Desktop的窗口过程是DesktopWnProc函数,在该函数中主要调用了DispatchTimerMessage函数。该函数的实现是
int slot;
TIMER* timer;
#ifndef _LITE_VERSION
if (hWnd == HWND_DESKTOP) {
pMsg->hwnd = hWnd;
pMsg->message = MSG_TIMER;
pMsg->wParam = 0;
pMsg->lParam = 0;
SET_PADD (NULL);
if (uRemoveMsg == PM_REMOVE) {
pMsgQueue->TimerMask = 0;
}
UNLOCK_MSGQ (pMsgQueue);
return TRUE;
}
#endif
void DispatchTimerMessage (unsigned int inter)
{
int i;
TIMER_LOCK ();
for (i=0; i<DEF_NR_TIMERS; i++) {
if (timerstr[i] && timerstr[i]->msg_queue) {
timerstr[i]->count += inter;
if (timerstr[i]->count >= timerstr[i]->speed) {
if (timerstr[i]->tick_count == 0)
#if defined(_LITE_VERSION) && !defined(_STAND_ALONE)
timerstr[i]->tick_count = SHAREDRES_TIMER_COUNTER;
#else
timerstr[i]->tick_count = __mg_timer_counter;
#endif
/* setting timer flag is simple, we do not need to lock msgq,
or else we may encounter dead lock here */
SetMsgQueueTimerFlag (timerstr[i]->msg_queue, i);
timerstr[i]->count -= timerstr[i]->speed;
}
}
}
TIMER_UNLOCK ();
}
很明显,该函数最重要的地方,是调用SetMsgQueueTimerFlag,把MSGQUEUE的TimerMark变量打上掩码标记,并唤醒消息队列。
消息队列的PeekMessageEx函数,就会从特定的timerstr中取得对应的信息,并形成MSG_TIMER消息。
下面的一个序列图简要说明了MSG_TIMER的产生过过程: