1、问题:导入大数据量到数据库,用我们普通的SqlHelper来做是每插入一条都是打开连接关闭连接,这样太慢,因此我们会想到让SqlConnection一直打开直到所有数据都插入完成再关闭连接。但是根据数据库连接池,这样速度依然很慢。
2、解决办法: .Net给我们提供了SqlBulkCopy来一次性执行插入,效率和速度要高很多
3、实例:
如:导入手机号码归属地信息
准备材料:"手机号段归属地数据库.txt"文档。
如在Winform中添加按钮,按钮的点击事件中实现。
#code
private void btn_import_Click(object sender, RoutedEventArgs e)
{
//先读取文件
//打开对话框,选择文件。
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = "文本文件|*.txt";
if (ofd.ShowDialog()==false)
{
return;
}
string[] lines = File.ReadLines(ofd.FileName,Encoding.Default).ToArray(); DateTime startTime = DateTime.Now; //新建表
DataTable dtTable = new DataTable();
//给表添加列
dtTable.Columns.Add("StartTellName");
dtTable.Columns.Add("TellType");
dtTable.Columns.Add("TellArea"); //遍历每一行数据,处理数据,添加到行(DataRow)中
foreach (string line in lines)
{
string[] strs = line.Split('\t');//\t制表符
string startTellNum = strs[];
string tellType = strs[].Trim('"');//去除两边的"
string tellArea = strs[].Trim('"');
DataRow row = dtTable.NewRow();
row["StartTellName"] = startTellNum;//给字段赋值
row["TellType"] = tellType;
row["TellArea"] = tellArea;
dtTable.Rows.Add(row);//添加到一行中
} //获取配置文件中连接字符串
string connstr = ConfigurationManager.ConnectionStrings["connstr"].ConnectionString; //SqlBulkCopy是实现IDisposable接口的,所以必须用using
using (SqlBulkCopy bulk = new SqlBulkCopy(connstr))
{
bulk.DestinationTableName = "T_TellNum";//指定表名
//本地列名与数据库列名建立连接
bulk.ColumnMappings.Add("StartTellName", "starttellnum");
bulk.ColumnMappings.Add("TellType", "telltype");
bulk.ColumnMappings.Add("TellArea", "tellarea");
//把dtTable的数据写到数据库
bulk.WriteToServer(dtTable);
}
TimeSpan ts = DateTime.Now - startTime;
//计算时间
MessageBox.Show(ts.ToString());
}
#code
4、数据库字段
id bigint primary key,
starttellnum nvarchar(30),
telltype nvarchar(30),
tellarea nvarchar(30),
5、可能遇到的问题
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAcMAAADuCAIAAADKofvVAAAgAElEQVR4nO2dbUwbaYLn8d7t9N59WJ3uPp2wRjva3d4Y7Z400s704dmxpYumL7Qu0vTQsx9u7pQoxLZ0JyWdSNfQI6WFNzBSd5MmLXVCwNCd6cCKmcmkAwZ3km7STdLpkFCE6WCTBNsQAzGE9xeDAdvl+/DUy1NVT9ll3kLC/6+/nKJSrnrKrvrV/3mpcl6PfwiGYRhetys//DTvmRcChmH4uTZICsMwvFHnRlKub/D617efeaFhGIZ3lHMj6e/+8NmNGxevffXtMy83DMPwznEOJL1xu/fSpYujwZfar3Svd3tdJ1+3m1+v8TH+67KzwP7q+106fw41HLWbC4gPOo8eFKdlOxu3+MPqqHm1QCw8mT56WbtYw1G7ueDgyY5n/dXql3Dn+nksMwz7h3pyImlLS0eY+4t02vTFv9r/+JlvXdvTJ2njO0oAqUna4x/yvX/QXPBOgzzRdfJ1u/noZXIGakkqw3dTTs71kZQsKV4DtpSwvvcPypvYEJUuO7frKrV5ZYbhZ2mjJG27cr3zq5pzZ/7xrf+3N3TvL7/t6uu+Hza2DfVpqfQ7Df6hHuGMomfubJLqmyapcqe2nEqbF4e3j6Q7JcLDsMbk4M88R7IhknJ9g4H+4cd9L5W+9b+czv/77ec/+PrC33vbO3IvnF4m7Tr5usBNkZKEpDVO6jRTktQIoQgR3mnwyxxsEN/rbBTLo8pEr9f4hPnKIJkhk0rB8+hlGQ3iTKlgYrHZ5VG1bChmigufPGqXLyGK4tFz5KsLdQmh4ShcvXQ+E+XnJlq4LJEVNr5jli8q1KaFzemWX7mzm1tmGN580+jMgNEegyT946XWm5+70kv/6djRV1/97//jTtt/Xn3w7wbuX7955z7XN5hLyXRISp1CDUfJAtRZJC6fayZlkJT26zU+kW7CCd/4jjitDGU0PRkk1Ybugyc7RNwo4jAFbm15BCay8qBiYeEyoyxeZippS5jpM9EsTyhGZh482UFzVrnk0csGyi/t7OaWGYa3xPTBlmGx7CT9tqd//Olseu4v01Nm54H/8qMf/9P9z//jEve9exdeutP9ICtJqZ4iHR+93HDU/urrB2UiiCfkq+93SXSjcijpcVofSenzn5ovQVwZxHro6qceSRUBTcKNktHKT4OCi7A5Ml/aX2HNHTWvkpnCwoxaMF07VtSUtSUUCCXwS1MGfT5KnwlZD50EFfs+pN6Wuvyand3MMsPwVjkrRntEkg5yrP/j+ga5vsEW77UbF/fGH/375ft5PyvMe+kv/kPPv/7Z9BXTXJvpxh/Krnx503CBqAyiyBFdDUffOdlY82rBwZONEhOldtKuk68fdDbSFf8N1e6pCik5A6Xpy07NqatIizokVRJTTp1CITNnUkXcVl0wNGFN/tBYxdOnkorp8p+6n4keocTtKotNf/JGyk+XZ/PKDMNb4pwyqR5Jh774uuvKlYtLXN7st6aFW6b//VreX/3tj/3NfzZ92TR50fSo9t9+2z1grECXnQV28+vvOF+XXlWVMokO8sms1+OkeEum3iQjJBW7j2WIKzqUs2ZSJTHlTKrbTkqvQUFzu7ORnWRZJGLQc535zjhJqUxKNWorvspM5dfs7KaWGYY33zRAM8O08sNP80j2lCz9H9c3dPXL7sCll6Zv5M10mqa/MPV8nFfufCnWZpr4nSnalBf9NO/y+z++1NJOvYValX+op2+Q6xtsf/+AeFZ0nfy5Lf/nZ9v7BuuP2PItijjTcNRutth+9t5trm/IwCio7JlU0Xef4QwkldDXD6qqnwYzqX6LZ8ZyMt6lX7NWkpRdPOb+6rU5alt+GSSVTbUdS620BttJdRo3tR/1RssMw5tsLTozwDRTJr14yev9Q9li1/dmb/z57Nd/Fusw/fK/5f2j9Wff1b80eenPJ/7w0uQfvhf59N98+cVXd/4kJ1OBoeJEw1F7vuWAEDr6bp/8ORVhGk/kW+g2SvurPz+Qb7HlW04wzw2BpI01YnNhlkxqlKRSHNb2Ggvd5RlJ6pfD2qvvX1YMBvArcpzinFd0xyvfou5f0g7AYhWPfmPmfnBpPTmQlOwXM4pSCzMuLYryZ9rZjZYZhp+lM5H08ytfc40/6P7ty90f/033x3979+O/vvfxX39R/Vd3PH/TVfd3XZ6/u+P5u7uel788+1//cMkrvYvrE9cgxVtxguu7/S9iJhWj61CPdlChgj7CaZa95+r56sM1Njr1BfGu2ll4VzoTST31H390pvajs7Vna+tq6z6p++T8x5/89pPzn3788W89H5+vq/u45pznzNm6M2dqGz75rfSujCR99ju8U7yr4LKrdhbeldaSdFA7sCkTATMsrCGpFtnqNUsNrC+8dxVcdtXOwrvS4nhSZXVbsl5nVI9yvvRGxZLaCc0bVaXRFgCGYXjne0c96ZnBVhiG4Z3vnUTSXVKvh2H4hfNOIikMw/Dz6coPP82r/PBTGIZheCPOG4yMwTAMw+s2SArDMLxRg6QwDMMbNUgKwzC8UYOkMAzDGzVICsMwvFGDpDAMwxs1SArDMLxRGyRpq2P/uU7pz+YTZsuJRt2Feyr32x3Nev91oPKW3p8bdKsjU6l2tm+d22vZjI/i1rm9R1qzb6X5BPsZr/S3LLn5xN6qHvWXrrcGxV5Ih02rw5JhMcGdVQc2dNjcOrdXWf7GI8LmtKttPGI3az6ozqoD+rvTU7lf3H3FhhiFYaxH5SOt5DTJsIyjWS4/9cZz8rs25YCBN8mGSKo8xFsdlgOOIwcUB+Ktc3st+oeF9JWrzvPMp728Ofr4y7zkppO0p3I/85BtdVh0uLM+bxZJCfWybqjqhPRh6vNLs076+2o+wfo6VFhRXoCzWbckxg6bzqoDe6t6aPoo16ahuR7ZVesXdl+HpBp8G/5y5RVKO878BBqP2B3NjE+y8QhIuoNshKTkWySc6qncbyfnVeMRu3zSZjyehK+cTjGWA5W3lJduJkeaTyjOhyyY2CqS7t1/QLVdoeSbSNJNcqY0pKpVHGlVL2w5UHmLlYOY68lCUkXg0v/WMtPtRGPE+GFDkU78KFhcbnVYaMKyE6WiwBlJqv24DOZfQyTVBH+6YCDpjnJ2knZWnai8RV5ljBI3HsmFJjIHyeGruMyyDgvVQZ/VW0VSR9W5vYo191TuP1BZdWIHkrTxSKZPTD6lRZJS36Z+SwsTmkZq99nzmuIYUHJEBI3Bw6ZZ/XWoqGT0CqG8Bjia1SRVZN4qRnuC+vPXbQozRtIjrY1HhL1uVCIeJN1RzkpSITWQlrK9VedUIWLv/gOMdKOx+Hb5lHAcUR3omsNCc25oSyUnF2HmicYIqUxR8UGYbnVYDlQ2C60Q5AxRXudbHaTaq5gptPkqAjgpGF08qnFD3CnyRrmcWearyqkuBrXLlkwQz3p2CTDVz6SMOCnXdqlrlYHafWfzib37D+wlbUFscuVMUp3Dpqdyv/qizsikOs0CCvxR+yXVpXQyqUh26uKhJumtc3st9r37DziatRcqeYXSt8Yi6Tnp+tFYdWBvVSvaSXemjdTueyqrsrZmKs08ZFnVNOm4yYWkrQ6LkmsygzKTlKqZSq2uqgXkmfIpKmBXWIyaI6WYI2I5lYuZae5knp+lGHQ8Z1BD/qb0OjFUy2fKpIqstLeqR0qOiuWzk7TVceSEw3KikW6TUbfPGCJp1sOms+rA3qpzjv3nOvXa68lW9Fvzqc/2QGVzTyddtsztpPQhoT6MhQNVLDD1zdI7SF2f1OGU7LvQtkYubK1a/sI7wdlJKldnSJZRHYXU6SQf4jokVVbThJWzDkFheb2uZDP7ODaQSaWTnDFNz1S09zmahQmhC1vCsZICyoysGsCgWA9jPrucYjFUu5wprbOsbNeTaqxGMyk5528pmziy1e47q07QNXF6u1TAN9ROmvWwaTxyolHTu7WeTCpkQGWjZHaSigeAkB/lb5acHUr000eI0FwgXV2kJeWuBeX5RZMU3lHOcTypKlMovmkqj6gu/opru3JJ+XhitpPqdEOpSSqhcOtIKmy38oh8gtFJR+7dfjYkzZhG5TNfWKGiEspIWKpMKlxNtU14miOEgl0VVXmXNkGOAXpnc24n1TtsjJE0YyZtPELVFfbL9QwmSRulwC41fykORbvu6Ahh5T2V+09UVinHwEjXJ7rypGglo0ma29AIeEttjKTkG1XV1CLK04nuZzecSUWzuzs6qw4oGoOENWhq9/KgRYmkcsOTebNISk4Pi+Zko846anNyJDE0PzNJjdbu9b8+qaFTqCpS155b5/buP1fJ7qqSB2wo15DbKCg69DEGflBfN6MMRg8bAyRVH1o6GTPboCVyXZEORc1IAPV4ap2SqAcbZPzihPUoSCo312quc/C2OytJFWe+fu2enJwi44y1k1L/q9/tTr9LXmfGHieqrr33yIlNy6RCDY76KDS9vdTmeir32x1HTmgKqTM/C0mpPJWxx4lpuX1T6mgSAHeg8paq/0SZbS0nGoV4dU7OzlLvf8bavfDZqrrm6KGprAoyk6TGDpusJJWuCpphGPKHoLl4K5ZUV8Y1Zh/GGyIpI5NSwxXEzkNjQ7PhLfTm1O7p2iJ7uMmRVla4MD7q/rmz3o1eGW4Ay+FbyEpSxbdAXWD2VvVIvTSOZvGSI3Vwqb8FetybMvvkODJfurZlzonGMinzsJHiNvvwEwmoaQZRp1EN3aRrmJGRJDq3DOgdCbptxOJwF00mVbRuS+1FyKTP3Ljvfou8uSTtUbSOWTLEIhiGn4FB0i3yZmdSqrcEGIXhnWaQFIZheKMGSWEYhjdqkBSGYXijBklhGIY3apAUhmF4owZJYRiGN2qQFIZheKOu/PDTvHQ6nU6nm703YBiG4ZysJqlWPM80Q6mUUSeTKYNOJJIGvbbGdELr1VWjXlldY3iF4fjKqkEvx5le0Xpp2ahjS3GDXowtG/TCItNLWs8v5OC5+ZhBz84tZvaM5FmGp2cXGJ5ZmJ5ZmDLgyel5g56YmjPop5NMz2o9PmHUYxMzDD9lOPp02qCfjDM9pfXomFGPRCcNevjJhEFHRpl+qvXjkRw8NDxu0JkyqQajfCrF83yavFITIClICpKCpCCpYZIqAQqSgqQgKUgKkoKkIClICpKCpCApSAqSgqQgKUgKkoKkIClIultJqkEqSAqSgqQgKUhqjKRpzSgokBQkBUlBUpB0AyQdbHrNUlIzSCbsx67fPKb8jYd99RE1NDsqzJaSsx1N+ywlZ8MUSUON+yz2N78kuLzxpmo9nog8/xcXBgRWDp35Bf1nMpFIXikV53xxUvNTQievrCXX1hKP6g7p/rrDW50gKUgKkoKk203SIuHn2CqOlZXUDPL8YNOx+gjP8/z1CnOB/VgHf7VM5tSxjsjZYru5uCkUvnms2G62VFwVSXq1VF7szS9TBKz7PBGasEHPIQUWVaws7VST1HLoo6AQRR/VHZJIikwKkoKkIOnOIulrlsM1g2mej9S8YTeX3QzVHzZbDtcM3jxmsb9GB9JwU5HFfqxeJC/tspskqJ4JpYKeErOl4mqoschiNxc3XvWUEExfTaaSocYii73I0/imxf7mF8lEovNNi91c2jlQV2K2nLxCImqxuM7iCwP6mRQkBUlBUpB0J5GUj9QU2/IttnyLLX9PSc0gz/N8qL4k32LLL24K8XwqxV8ts+WX3Ux1VAiLWWzHOvhU6uaxPbb8sptCIC2zSf+bb7Hll97QNo9eLbXll95IhiJnSm35pSff3GPLt9j21Q0NBC+8uce2r25IrN3b8sVMmr9HkUnz95y8spa8UqrcltZvdT6sPZRvse2rHQRJQVKQFCTdBpJ+Q7In6XEK1ZeoY+AbFWfLSsyWkmNlmv8SXVQfSYWbiiwVV7+sMBc3XvUcMpfeCHoOmYsbz5TazcWNQXWPU6cQS4MXiiz2IpGhcjtpcZZ2UtpXSu1my6GPBhS4fFh7yFxgLwJJQVKQFCTdDpJerzAX2ARbhEzK8zePW2yv1Tcdt9iK6iOp1M3jFpu5wGYuqzj+RkmRxXa8gxdmipk0FW4qstjkVZU2nimm/iywFQk9ThHVfHHTpHYvZFJzgY20mWbou39Ud8hc2rm2lrhSaiMk/fwtGxOdIClICpKCpFtL0mtlNnPZN6H6ErOl4prI0OPXCUkj8iiojgpzge14RyTUoSQmoaQ2kxbYSNvo1VKblEmvltrMlkNnQsxRUJ3HLDZz6QWBs8UXBsgcLXOLLzxaS6wFLxRZbGbLySsySTvftNi04RQkBUlBUpB0W0hKceq1sorXRJLKlEzxV8liZTdJ9mRk0o4KBe/EdlKapEmh04mZSQ+dCVKZtJjuux/6qNhmLu2kMungR8U2s+XQR8EEnUlXBy4UWWzm4gsPQVKQFCQFSbd9ZP43xy028xtNIWHkkyaTkkBaVmEusB2v1ydpcWNQbietUCdKwtNQY5HFpmoYHag7xCQpmS+QVFzPm9eSj+oOmQtsRXWDYjupHEUf1h4yF9iKagelCZAUJAVJQdKNkpR525LyziWq77644hiZLi4p2kPSaCqZjJwttu2rjySTN4/tqbgSatq3R9NXXnbzSpktv/RG4suK/F80XvEcyi+9QXXEN8oD74ONjLdbbPl7Dp0ZEHqQPi+15f/iwqOBC4olS+Xx9g+vndz3iwsPV9dWV9dWV9c+L7Xl7znpE/DXeXTPyY8eDT4Q++6N8jHOMBOFufAxrvXW8JGBwlz4GNPaOByN8FEG5exCZqv4qPLUzDzD0/NTm89HBgpz4eOM1kwU5sDHcYaZKMyFj5Nabw0fGSjMhY/j4uu4NC2yj6ak7jRFxvHM0+HH0fBj8kpsjKRXy2z5e8TR9eGbx4ptx66ngmQUlEhJxWCmUNO+PbZjHeoRTsH6kn2eSOJLYaTUm18mM5B0X90Q3fn+qO6QRNLPSwVuPvri5L49Jz9fTTysO6QcX9W5KjB08KNfCDP31TGIqWeQFCQFSZ9DkqptPGYyk6aeKYYKNphJaTO0NXfTM4bW5zLefk1rkBQkBUl3AUmfUiQ1lEYpkmZJo2SaTqMgKUgKkoKkLyRJkUlBUpAUJAVJX9R2UpAUJAVJQdLngaTPOJMyfo35PARBEKTRYGQ8/HhM5Uwk5fl0Xp5pi1/zeJ5nvW71dl+cVxiG1+F4fGV4eCQaHZuamp6ZmZU8OztHXiXPzc3Pzy88fToxGBlfJ0m3xVo9+0/5eTFgCsPr87aSdFtOVJAUhuHt9jPOpAO+gLNX/LM3bPXFpf/yNXB5TtqB01H9PZHfO+10htuVJB3wBZSrkhz2ySuJn3YLcwZ8AbK2AV9Aud34aXeGP3NaD9k0WVivSDNOxZ/Z7WvI+CllMzIpDK/PW0FShs6fPy+1WvI872vgTE7ZDMY1zIic4nmeH/AFnL0zTjVYqQ0IJOVZJOUJ0TTPAYifdod95I/eMLsYop296TTP89GotWFGXm80am2YSQu/nCoUgyxvcnImF8OuXmrTPE/vI8/zIjrl9VAFoHbfHR0Q3ksvQD5Y5ccCQdC2aFtJKkmiT1DIpDzP0zQUyqYkqfCq/C9xgkHS5dNuznlPeHuekzO5ZO4QbppcBGfpNHm7GrWCSHBOS5R0cSZX4PRYOugLUJQMnB5Lp3vDP/HFyQ7SgKXXE6QDsjvsdAdOR3kxvYokFUT/KUyLS/IUjuVPZoMklS51EATlpGeTSdNjQrhLq5Ez45TDZvy0W86tzl4Zl+n0jNMdDQrhTkvSUDs/7XRyVt8yWVGmTMrzEklJUlaHyoaZoC/g6hUpmU6n0/HT7sDpsRmXkA15Pp0WENYb/om4HnXIbZgRiMzKpBqSqgJ42Ef+Kxq1Kj8fdmjVZnYIgrZSeiRdWFiMxZYWFha3KpOSGOVr4ExifdnXQKqoEk0EyqTTaSG6irVpCcQ0SUVghZ0ajkgkpbafFl57w3lknUIB0uL/p3leqs4LLQACrNPx0+6Aq0HAIlnQ1xA4PSb8QdajuEBIzQJqiMskVe47L+6dOpMSgDp7+cyZdH3hFJkUgtYnJknn5xdisaV/+Id/oGFqlKSamMnz2kyaTvPRqNXJqWu7oq2+OJ25TKSlMi20bAa11fyM7aRkW6zavdgGKpJUrq1Li1EkpbKqULt3CTBNSyRNp9N6mZTsubInLWBlkVTbRWb1RZ3OsFN8r0hSVTupptEDgqBtkZakBKPf//73f/SjH/3qV7+SYJoDSbWbUWbS+Gk3l+eODvSGTXKPTfy0m8vYTpoWwymd1IyRlOd5XgG7dHrG6Qz7hE2L7Bf/HfAF5OZOaQG5bUHosifQlMOgmEmlNVFtmlIpyDLq3O1roKrwwqJUQ0dvmJDUp1iXNpPSUVe1sCEhk0LQ+qQiKcHoD37wg6Kiorfffruqquo3v/kNgemmtZOmpe5yd9gp9p7z/IyzIeyUWh55XqSM0PxncnKmhpl0esbppIGr107K8zzPR59YG6alDKiXSfPc0aAYFU3KBYQJdzSoJakAZSEmSySV1sMYDOCODpCdjUatdBNENGolH4W068ICegMJpH1XkXTGKXfrr4ekEAStTyqSxmJLv/zlL0tLSxsaGi5duvT5559/9dVXPp8vFlvazHZSXwNHWidV7XrK3nmps0Xo4hf465SbVrNk0nthqdOJ52ecpKeeToVUJhUbNxWZlOcJ5jKQNK2aQ1IqI5NGo1aRpL4GTuxfCpyOkl0Q2UcWIwWWQig1qkFKwQSXp+V2gMBpX1jTrS98jOJbsgiZFILWJ2Ym1XozM6kksZqsGtmjPu2lHqcBX4DEw6AvYFL2OEkNi1bfE4mkA76ASNL4aTcnwZFZu5dISjb3E19cCoZCvz89VlSMk4q2Al6HpNR6+HQ6PRa1OunWCalRWCSpsGtqkorhWrr2SA3Kws7maYZMkf409TBYCII2W89mPCkZ5WMSu9o1zaNi/4yIKqFXippJYCrV3Ok1tMtdOoHTUV7q2qLESySVZ/GMdlJRrHbSMQJQsRFA7JhSFfsnmtFXdK+6GE6FaWXlnZJ6pC3je1SNYaCvTMikELTVejbjSYnSrL6pLVM6rd6eZobOm9LKt6YzSm9juqWAIOj517PKpNBOFDIpBK1PzyCT4nUnv0IQtA4hk0IQBG1U8Xj8bnf3xYsXa5Wqq6sjr5J+//vf99y7B5JCEASpFY/HL168ODIyurS0TEyGPU1NTU9MTD99Ojk+PvHkydjQUKT3T/f/+Mc/gqQQBEFqxePxmpoaiaHz84uzc/MzM3PDw0+GhoZD4cePHoX/9J3/xje3798PnDl7xuh99yqdP38+c5f3Zkm7h9uzXQiCdrNWVlZqamqWlpaWlpYWFxfn5uZnZmanpqbD4cePHoX6Hzzq6+vvusN1dt7605/unzl7ZmJiYmh4/Pz588xfIQVJIQjajZJIGovF5ucXCEafPp18NBAKBB5+952/p+e727e7v/76m97e70BSCIIghkBSCIKgjQokhSAI2qhAUgiCoI2KJikZ/7S4uDg/vzA29nR0NDo8PDo0NNzX158LSVnwAkkhCHqBRZN0eTn+Tz/5yeGSkrfLyog/PH368mefBYODICkEQZCuVCR1OZ2/PX++RVRHR8fdu3d3FkkzwxEkhSBo+/Wc1e6z8hEkhSBo+/U81e6NwBEkhSBo+/Xc1O4NYhEkhSBo+7X5tXsmu9DjBEHQC6wtqN2zBJJCEPQCS0XSf3G7L3/22XVRt2/f/u6773IjKTIpBEG7TVvQd88SSApB0Auszb9blIkvkBSCoBdYuO8egiBoowJJIQiCNiqQFIIgaKMCSSEIgjYqiaTkR5ympqYnJibHx58+eDDQ19ff23u/u/verW/vXP/qBkgKQRDEFiFpLBYjGH36dGJs7OmTJ2N9fYHe3u+6uXu3b9+9cfPbjuudICkEQRBbKysrzc3No6Oj8/PkV0WnJienJiYmw+HBgYHQo4Hgw4eP+vsf+v39d+50NzU1gaQQBEFqrays3L59u7m5+czZM5nd1NT0xRdfgKQQBEFqraysjIyMjI2NTU9Pz1Kam5sjr5Lm5+cXFhZAUgiCILVAUgiCoI1qB5F0U9gHkkIQtP3aWSTd+P6ApBAEbb9AUgiCoI1q80mqQhiZOP/JJ+IsXcKBpBAEPafaukwqMIzQ7Pz58+JkWpqtKgpICkHQc6otzKRSBE2LtXuaayApBEEvjFQkXVhYWGJpcXFxne2kICkEQS+8VCRdWlr64Q9/+PLLL7/88ssWi+WnP/2py+WqqqpaWloynEmVG8hKUu3ERgSSQhC0/WJm0n/+538+ePDgr3/966ampq+++iq3TJpr7Z6e2Dj7QFIIgrZf2nZSAtO33nrrd7/7Hcdx4gP3cI8TBEGQjghJx8fHZ2ZmpM6lxcXFpaWlixcvShgFSSEIgnRFSDo5OTk7OztPKRaLLS8vx2Ixac7CwsLi4iJICkEQpBYh6czMDGFlBi0uLoKkEARBDBGSzs3Nabkp0ZMWSApBEKQWIakWmrFYjLyqBJJCEASpRUiqJaaeQFIIgiC1CEknctE6ScrzaZYZSqWMOplMqZxIJFXWm6/ntTWmE1qvrhr1yuoawysMx1dWDXo5zvSK1kvLRh1bihv0YmzZoBcWmV7Sen4hB8/Nxwx6dm4xs2ckzzI8PbvA8MzC9MzClAFPTs8b9MTUnEE/nWR6VuvxCaMem5hh+CnD0afTBv1knOkprUfHjHokOmnQw08mDDoyyvRTrR+P5OCh4fGsXg9JIQiCIJVyI2k6zQykjEyaSqWQSZFJkUmRSXdDJiUGSUFSkBQkBUm3hqS85j56XiKpBEGRpClJMkZBUpAUJAVJdz1JZYzKaZQnr6mUIpCmUnyKiqLIpCApSAqSgqRqktIVez4toVNBUkWtHiQFSUFSkBQkzUpS0jAq8RQkBUlBUpAUJM21dk/BtDds9Y4PemYAABJlSURBVMWF2n1v2OQOO8sD1WO6JB1oD1jbl9Xz74VNLk7lPKdsB6ck6cio1SXMpO31KNbg8IRMnikC0FYPJ04n1tYWT5UHW9cSa2uJfq9ffkvdlJKbUw5XsCUXkrbU+asiIClICpKCpKy+e9VdRvSQe743bPXFeT5eXd6d5wy1pZaq3QFXfcDk4vKc/uoon0pNO5xqSlIOVEc1mbQnZG1b0sukD9r8jPV4phKJZCIx5XCFvIlkggtZ22Jra8m17pDJM9Xv9Vu9MSqTKkjq6E6sriZWh0cLJZJ2B1Xrd3RPOaQ/y0cCq2srqwtV5fICh++CpCApSAqSrmcUVLzaLaLEHXa5SRRdrhYm+PZ6gZLZM2mKf9gW0MukhW0xkaTTThdnFf8UzIVMhJ4akrZ61MB1dCcVMz1TbJIyMqkwHfD6C70LKwJJgy2rayura4FWP0gKkoKkIOkGxpNKmdRNIdUXlvPmvbApUyblnPcEklrblrSZ9EFbQCDpyKjVFfhgNEUomUgkE4nYKbeURiWSCqsVMulacq07RAXS5NpaYm1k1OrKmElXqQTq4kyuYAsh6fBooctfNby2wsikk4cVb/G/HwFJQVKQFCTNmaQ6mfReWAyh0w5nuD3FD7QHTE6usH2ZRFSHSFKTk6OZy8qkQjupWMH3nxpRtQBoavcskopto8FWXZISL1aVqzMpAejh7iyZtKUOJAVJQVKQNBeSilFUtw2UEFOeXz/NrN1LmZRMqzMpIenoE6uLI9X5B21+DUzpTDrqUJeHdDotnvIEHeXB1pFRq07tXtEN5eJMLq7QO+pwBR11YgLtZraTLlSVE5IuVJWDpCApSAqSGm8ndXKFvjh1t6icSdXPgopGrRJDo1GrkyNpVG4nzZhJH5CGVPeTB2LfvboNlGNn0n6v31Q+2i9m0n6v39Et9zi1evynRpiZdMrh8lcNCx1QhKQtir57bSZdqCoPtqwIE5fRTgqSgqQg6TrbSWnT3NTGQ8JNp9h33xMyuZ88FDOpsyfFzqTJaYemXu/16Pfdr8VOlYdOeUOnRgSStnpH++W+e2GCIqnUHqrbsHu4W4+kk4fLRwIgKUgKkoKk6yVpmueXq92cq5eE0WmXK1A9xhqEfy/MrN2TjiaTM/BBzxOrK+RljcD3eoR6fWJk1OrynxoRBpBSA0sJScU6vmdKbCSdcsixlBoFNTJqLR/tV5G0fLRf1XHfHSz0LpKs2lKnIGmV3A7gr2oNFrYurNAkjYwUkq4n7QRICpKCpCApi6Skl4lgJdyurN0PtAdMrnC7RNJo1OpUNJhKLaRig+Z0pnucxNq9anC+ODI/5CWZtDsk1+vlaZmkrR7O0S3e40RIKtfx1SRtqROJOby2srpG/hRGRK2sBVr9Jhep2q+trEwedoGkIClICpJmJKkwJp9PB32BPGd3YfuyCFDOVD9N8ZQzuaPV9ZzJyVnbl6UbmZz3qHzq5Ez10+31QmW/kBoIlUfd45TnmVK0jbpHH2S+VZQLWT0hqyvUSt0n2u/1mzxTMknFQCreLSokWSl+yqYyqc49TmJf011hSH9h6wLGk4KkIClImoWkqgdB4ddHcN89SAqSgqQgKUgKkoKkIOlWklS65V667x4kBUlBUpAUJM2BpNSDoHiQFCQFSUFSkHR9JKW77EFSkBQkBUlBUpAUJAVJQVKQFLV7kBQkBUlB0uePpPJTnpFJQVKQFCQFSTc+CgokBUlBUpAUJN0YSal6fkq8x0liJUgKkoKkIClIqk9SCosUVJkGSUFSkBQkBUl1Mmmz9wYMwzCck3N8FhQyKTIpMikyKTKp8R4nkBQkBUlBUpAUJAVJQVKQFCQFSUFSkBQkBUl3D0lTskBSkBQkBUlB0vWSFJkUJAVJQVKQFCQFSUFSkBQk3QySSmQUAcqT11SKT1E3OKVAUpAUJAVJQdJsmVRAqQRVCqbpa2W2/OKmEJ8O1R82F9jNBXZzgS3fYssvsJvfaAqJoLxaZjdbKq5SEyApSAqSgqS7gqRUypQzKSFrSnyIybW3KZJaKq6JmfRaGU3Sm8ctdnPZzVQqcvYNMgGSgqQgKUi6O0iqaR5Vk/Ta22ICfePwaxa7OpMW2I938KkUH6ovEaY7KsRlKBc3hUBSkBQkBUlfVJLy2UhKZdJvjltKasKPa96wH79+89iekprBSM0bhKQ3j+2xmS2Hz4b5q2V28xtNZzUVfILaIk8EJAVJQVKQ9IUjaQ61ezVJz4Yfny22He/gQ/WH8y02s+Xw2Y6mIov9WAejqRQkBUlBUpD0hSWpkVFQ1962mwvsr9U3HRdr98ev35SnO/irb9sFktZXkBbSq2VU1d5ScjaMdlKQFCQFSXcvSSM1bxAaHq4ZFEdBDTa9ZrEfvy7fLRqqb7raUUFq96p+fPQ4gaQgKUgKkoqZ9I2m0HVWV1KB3fz2zVSKT4GkIClICpKCpNlJyqd5nqeGlNpfq4/II/O1JKVoW1QfQTspSAqSgqS7m6RlNnNxU4hM7Km4NthUtMd27HqkpthWVB/RJSl6nEBSkBQkBUnp7ibz29+IyVTRTnrtbUbtPplMXS2z5e+puJpMJZMp1O5BUpAUJN3tJF3H80lpeqKdFCQFSUFSkBRPegZJQVKQFCTdMpJmeNKzCpcgKUgKkoKkIGnOzydF7R4kBUlBUpB0oyRF7R4kBUlB0t1FUsVd95v0pGfU7kFSkBQk3V0kpTKoQFLtk57JNDIpSAqSgqQg6fqfBUVNg6QgKUgKkoKkuT/p+bknaXfQ6l0ESUFSkBQk3cpMmiNJU/dChb5lDUmnHU7O5NLYSRxuT/Gpe2Fr25LA0NEnVveThyIxWz2cg5NIuvSBO3BqJJngQtoVSosluJDJMyWQtDtkKh/tV5G0O8goD1lJN0gKkoKkIOk21+57wyYXl+fsNjk51QSxtX1ZlT3b6wPVUUYm9Xo4R48YSHtCJs90IpF80BYobIvJmbQn5OxJEVZa22KJRPJBm58A1EsB1+vxOzx+NivLR/sJST1T2tp9Sx1ICpKCpCDpMx0F1V4fqPaFrb6oq36aqubzqdRytTtbJk3xyeS0w/3kYY8cNvOcsgvbYonElNMznUymvB7O4dEn6cio1T36IHPtHpkUJAVJQdKdRtL2es7k4ly9PN8btvqWSVA11U9r2kmXq92c857RdtJWT+CDEbnRs9Uj8s4zpZ9JY6fcnLUtRiY0oAy1SiRFJgVJQVKQdIeQlDA0k+un2+s5U6Z2Us7kDjvcnMnJWduWksmlD0QCUplUQCppQn2Q0G0nfdDmN7kISZFJQVKQFCR9TkjK82men3G5o0H1E0yWq93hdl4ZSNunVTl0oD3gECNqsickdzqxMmkiMeV0hbzJTO2kXk/IK/wXMilICpKCpM8VSZ1OKmA6qQZQXgFNZiY1TtIHbdIa/Kfa9NtJRcgik4KkIClI+jyRNHsmjUad7oCpPnsmfSjjUtHjlOcefUCPJ83Qdy/+l9ejn0kxMh8kBUlB0h1HUna+E0kajRa6owP3wkYyqdcT+GBUr3afTI4+sRrOpF6P/9QIHUWnHAJJpxyuYOvalKN8tH9t8VQ5Z3L5q4YTq6uJ1eHRwvLRfjJBZmomQFKQFCQFSbdwFBTPUirFt9cLY++zZlKTkyukKvgqkno9nEkasZ9hZH62TNrq4RzdiTWBpHIm7ff6C72LAkxBUpAUJAVJd1TfvcDNbJn0YVtAHpmvl0k1tXuas4YzKaEnSaO0gy2o3YOkIClIujMz6Y6+7x7tpCApSAqSgqQgKUgKkoKkzwdJpTvv6fvuQVKQFCQFSUFSoyTlJXxSkyApSAqSgqQgaU4kpSv1IClICpKCpCApSAqSgqQgKUiK2j1ICpKCpCDp80dSqcNp9/Y4dQcLvYsgKUgKkoKkmzMKSoek8Wp3oHpMIGnQF3D1qknKeHyJS/GY51SKF56n5wx5k6mHbQFr21IikXzQFpAeqZfgguQRJ4mE4nHOCeUD8xOJ2Cm3X/cXSrpFktKPg+oOmshNokqA6t1ucLhbZmjA6zfVTWYn6d1gYeuCEqAL75f734+sxu8yNlRyRyDp5Vqu5I5E0vn3yrmSLoGV91v8ptoJmZ5Dw4X0GroIKMdLyiP3FehUzwFJQVKQdBtJqqjn65C0V30jE3mu80B7wKr5GZJUarnaLZL0Xlh+iBTrCSbSzfXCr48k5B9retDmV9zvxIXkm528sbW1ZL/X7+hOrgn3iQokbc38CyWEpHVT2ojaUkeRdHikUIe2JhdnqpuIr6z6W/2FrQtKkk4cLh/xSyQlmfRO0FQ7QQXSiZLy4T6RpJdrs91LVjuxNDRcKIL1fos/O0mHIq9o13NuHCQFSUHSLSApVVXXjMwnDBVIGvQFTNTvjvC9YZM7OmAwk9K/iKep3T9oCxA4JpPTTveTB6ywaRIe8Dzl8EwJKdWjT9KRUSt10z27dp89k04eLvcXlo8EtLV7mZsTh9VvD15mkHThvfLg5fjq8uORQoGnCpIux1cu1/rfeyzEz89q5WSqyKS1E0tdwcKWeQVJ5StEsIS6QfaV2uAr5ZH7yKQgKUi6zbV71j1OMy5XwOomv+C0LMG0vZ4zuaNBqnafNZNa25a8HlYm9UxJD3zStpOSm+upP8W3k18oYZN08VQ5Z/Uusm69p+6+z5ZJW+r8VcOTGlAKJiT1t/oP39XW7tUk7Wvxl9wR0qg4rSWpsvrftXK/xV/YMr80NFxYPnw/A0lVmXQo8oqUSUFSkBQk3RkkVbWTLle7OZOTc/aq20lZJBXr9fXTpMdJ8fOiYntooWeKtH6SXyWxti3pPA9fRKrUhKrTTtrv9ZtchKQbzKQklmbIpAvvM0jNFbaOKEk6UaJeJnjZQCZdH0nvt/SRTVxi1O773h0ESUFSkPSZkHQsanUFqnujVhdncgWqx3gRqYonPVvZtXv5cVCEpMxMKvfd94RIT5ReJk0kphyukDeRqZ201RNs7Q5uPJMKJM2YSXV6nFjtpHIaXe17PNH3OHsmlSv1bJKOl6goOUTA2vdKeeR+V5DU7t+tleg5+275wCVkUpAUJH0WJI1X14dd7kC1T/PQPGKxqTSl/qX7aQfVca8aBSX13atHQWUjKflFPCGitum3kwok3XgmJTD1V0X0+u61sVTTThrRdlv532OQVMqkEyWu4Gd0Zz3paBoaLqyduN/iJ3G1pGu8xBW8JEbRS7V97w7F77f0lXRRPU4EqS2zi7Hlxa6BzN1NIClICpJuFUmDvoCrV6rdL1e7GZnUwG+LRgdSvBBImX334oAnQlIKlypqy+OisvTdiyRtZTwNOstTSpUjSbNm0oX3y4OX5UxK/sySSZk9TtJ40s9qg5/pDyP9rJYzufzvDa3ElhgkvdQSuS/V97uCptrx2NL4IVffu4Oz75ZnqdqDpCApSLpFJI1X10eD6nbSQHU0lUotfVAeakulqCbRaaeLDqHqTEo3kioy6choIfllZpGkdA7V1O6TiZFR+RdKspPUf2qEzqRTDoGkZGLKUT7av7pYRf1CycrwiNBf3x0U8+nkYWpIaUsdR0aY6pNUOZ6UTVLVeNL591hNrhL9RbZOlJQP3x8aLnQFL7FISrec3m/pe6VlLrYUXxyMvOLiDnWhxwkkBUl3So+TJNIvn6K66Tllp5MBko6MFjq5PCdXKA4XTfaETNTP2bP77qVkmmFkfrZMKv5cMyGpHEj7vf5C7wKBaZV3JCCFU2p0/eG7qtq9SNK6YKGLM5WP+PVJStXumSPzqaq9bGkONW6/K2iqDbLaSUWSDkVeIZwdirzi4g61GIIpSAqSgqTbRtJpl9hCGiQkjUYLncIQ/QwkNdJO+rAtII/M18ukmtq95FwyKTFJoyrOsoblqzKpMHNCp8dJbDwtH/GvrPpbRYCWj/TJgXRBDKHBy/GV5bjUvy9g9L6MXa6wZZ7U68mEeLdopkz6bi0ndEmVR76LST1OGJkPkoKkW0BS1Zh8MiGMbeLFCWGacd99SlG7f27vu8cTTEBSkBQk3YxMKqBUgioFU2EaJAVJQVKQFCTNkkklgEpkFelJT4OkIClICpKCpLk8CwokBUlBUpAUJDWWSXMkaSqVAklBUpAUJAVJN1S7B0lBUpAUJAVJ1SSt/PBTA6OgXvRn5oOkIClICpKui6QEoXmVH37KhClICpKCpCApSJqZpBI/hR4n8jcMwzBs3FL01L3HKSetrKyMjIyMjY1NT0/PUpqbmyOvkubn5xcWFiYmJtLp9Nzc3N//9H8S/6jo/5CJGARB0POm/w9idnOo8eQzugAAAABJRU5ErkJggg==" alt="" />
解决办法:请检查建立连接字段时字段名是否都正确。
解决方法
1,首先检查数据库表的字段是否过小
2,检查数据中是否有类似单引号的数据,做一下过滤