uva 10870 递推关系矩阵快速幂模

时间:2021-10-23 20:26:39

Recurrences Input: standard input Output: standard output

Consider recurrent functions of the following form:

f(n) = a1 f(n - 1) + a2 f(n - 2) + a3 f(n - 3) + ... + ad f(n - d), for n > d. a1, a2, ..., ad - arbitrary constants.

A famous example is the Fibonacci sequence, defined as: f(1) = 1, f(2) = 1, f(n) = f(n - 1) + f(n - 2). Here d = 2, a1 = 1, a2 = 1.

Every such function is completely described by specifying d (which is called the order of recurrence), values of d coefficients: a1, a2, ..., ad, and values of f(1), f(2), ..., f(d). You'll be given these numbers, and two integers n and m. Your program's job is to compute f(n) modulo m.

Input

Input file contains several test cases. Each test case begins with three integers: dnm, followed by two sets of d non-negative integers. The first set contains coefficients: a1, a2, ..., ad. The second set gives values of f(1), f(2), ..., f(d).

You can assume that: 1 <= d <= 15, 1 <= n <= 231 - 1, 1 <= m <= 46340. All numbers in the input will fit in signed 32-bit integer.

Input is terminated by line containing three zeroes instead of d, n, m. Two consecutive test cases are separated by a blank line.

Output

For each test case, print the value of f(n) (mod m) on a separate line. It must be a non-negative integer, less than m.

Sample Input                              Output for Sample Input

1 1 100
2
1
 
2 10 100
1 1
1 1
 
3 2147483647 12345
12345678 0 12345

1 2 3

0 0 0

1
55
423

 


题目大意:f(n)=a1*f(n-1)+a2*f(n-2)+.....+ad*f(n-d)

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std; #define Max 20
typedef long long LL; struct Matrix
{
LL a[Max][Max];
int n;
}; Matrix Matrix_mult_mod(Matrix A,Matrix B,int m)
{
int i,j,k;
Matrix C;
C.n=A.n;
memset(C.a,,sizeof(C.a));
for(i=;i<=A.n;i++)
{
for(j=;j<=A.n;j++)
{
for(k=;k<=A.n;k++)
{
C.a[i][j]=(C.a[i][j]+A.a[i][k]*B.a[k][j])%m;
}
}
}
return C;
}

Matrix Matrix_pow_mod(Matrix A,int n,int m)
{
Matrix t;
int i,j;
t.n=A.n;
memset(t.a,,sizeof(t.a));
for(i=;i<=A.n;i++) t.a[i][i]=;
for(i=;i<=A.n;i++)
for(j=;j<=A.n;j++)
A.a[i][j]%=m;
while(n)
{
if(n&) t=Matrix_mult_mod(t,A,m);
n>>=;
A=Matrix_mult_mod(A,A,m);
}
return t;
} void deal(int d,int n,int m)
{
int i,j;
LL dd[Max],dd1[Max];
Matrix A;
A.n=d;
memset(A.a,,sizeof(A.a));
for(i=,j=;j<=d;i++,j++) A.a[i][j]=;
for(j=d,i=;i<=d;i++,j--) scanf("%ll",&A.a[d][j]);
for(i=;i<=d;i++) scanf("%ll",dd+i);
A=Matrix_pow_mod(A,n-d,m);
for(i=;i<=d;i++)
{
dd1[i]=;
for(j=;j<=d;j++)
dd1[i]=(dd1[i]+A.a[i][j]*dd[j])%m;
}
printf("%ll\n",dd1[d]);
}

int main()
{
int d,n,m;
while(scanf("%d %d %d",&d,&n,&m),d+n+m)
deal(d,n,m);
return ;
}