I'm trying to use a RandomForestClassifier on some data I have. The code is below:
我在尝试用一个随机森林分类器来处理一些数据。下面的代码是:
print train_data[0,0:20]
print train_data[0,21::]
print test_data[0]
print 'Training...'
forest = RandomForestClassifier(n_estimators=100)
forest = forest.fit( train_data[0::,0::20], train_data[0::,21::] )
print 'Predicting...'
output = forest.predict(test_data)
but this generates the following error:
但这产生了以下错误:
ValueError: Number of features of the model must match the input. Model n_features is 3 and input n_features is 21
ValueError:模型的特性数量必须与输入匹配。模型n_features是3,输入n_features是21。
The output from the first three print statements is:
前三种打印语句的输出为:
[ 0. 0. 0. 0. 1. 0.
0. 0. 0. 0. 1. 0.
0. 0. 0. 37.7745986 -122.42589168
0. 0. 0. ]
[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
1. 0.]
[ 0. 0. 0. 0. 0. 0.
0. 1. 0. 0. 1. 0.
0. 0. 0. 0. 37.73505101
-122.3995877 0. 0. 0. ]
I had assumed that the data was in the correct format for my fit
/predict
calls, but it is erroring out on the predict
. Can anyone see what I am doing wrong here?
我假设数据的格式适合我的fit/预测调用,但它在预测上是错误的。有人能看出我做错了什么吗?
1 个解决方案
#1
1
The input data used to train the model is train_data[0::,0::20]
, which I think is a mistake (why skip features in between?) -- it should be train_data[0::,0:20]
instead based on the debug prints you did in the beginning.
用于训练模型的输入数据是train_data[0:: 20],我认为这是一个错误(为什么要跳过中间的特性?)——它应该是train_data[0:: 0:20],而是基于您在开始时所做的调试打印。
Also, it seems that the last column represents the labels in both train_data
and test_data
. When predicting, you might want to pass test_data[:, :20]
instead of test_data
when calling thepredict
function.
另外,最后一列似乎表示train_data和test_data中的标签。在预测时,您可能想要传递test_data[::20],而不是在调用预测函数时使用test_data。
#1
1
The input data used to train the model is train_data[0::,0::20]
, which I think is a mistake (why skip features in between?) -- it should be train_data[0::,0:20]
instead based on the debug prints you did in the beginning.
用于训练模型的输入数据是train_data[0:: 20],我认为这是一个错误(为什么要跳过中间的特性?)——它应该是train_data[0:: 0:20],而是基于您在开始时所做的调试打印。
Also, it seems that the last column represents the labels in both train_data
and test_data
. When predicting, you might want to pass test_data[:, :20]
instead of test_data
when calling thepredict
function.
另外,最后一列似乎表示train_data和test_data中的标签。在预测时,您可能想要传递test_data[::20],而不是在调用预测函数时使用test_data。