I've searched and find out this may be a problem concerning types. But I tried to force the array to float using astype didn't work out. This must be a simple error, however im a beginner. About the problem: im trying to form the spatial correlation matrix bewteen the signals of all mics.
我搜索并发现这可能是一个关于类型的问题。但我试图用astype来强制数组浮动,但没有成功。这一定是一个简单的错误,但我是初学者。关于这个问题:我正在尝试形成一个空间相关矩阵,在所有麦克风的信号中。
R_a[k][l] = np.correlate(self.mic_list[k].delayed_signal,self.mic_list[l].delayed_signal)
where this class has a mic_list which is a list of mic, which is another class that has this method
这个类有一个mic_list,它是一个mic的列表,它是另一个有这个方法的类?
def add_delayed_signal (self, delayed_signal):
self.delayed_signal = delayed_signal
Thanks you in advanced.
谢谢你在发达。
1 个解决方案
#1
0
I'm guessing R_a
is a 2-dimensional array. What np.correlate
does is to compute the cross-correlation between two signals, and gives you a vector as a result (not a scalar).
我猜R_a是一个二维数组。np。关联是计算两个信号之间的相互关系,并给出一个结果向量(而不是标量)。
What you're looking for is probably np.cov
or np.corrcoef
. These are also vectorized approaches to getting the result you want.
你要找的可能是np。浸或np.corrcoef。这些也是获取您想要的结果的矢量化方法。
For example:
例如:
>>> x = np.random.randn(10)
>>> y = np.random.randn(10)
>>> X = np.vstack((x, y))
>>> X
array([[ 1.45841294, -0.16430013, -0.20782822, 0.08979425, -1.38337166,
0.36488053, -2.57135737, 0.81215918, -0.54081983, 0.30421112],
[-0.79416305, 1.14511318, -0.4962483 , -0.42647021, -0.59925241,
-0.45612051, -0.02566026, -1.7668091 , -1.63098627, 0.3761437 ]])
>>> np.cov(X)
array([[ 1.28563113, -0.20563105],
[-0.20563105, 0.74178773]])
Is this what you're looking for?
这就是你要找的吗?
#1
0
I'm guessing R_a
is a 2-dimensional array. What np.correlate
does is to compute the cross-correlation between two signals, and gives you a vector as a result (not a scalar).
我猜R_a是一个二维数组。np。关联是计算两个信号之间的相互关系,并给出一个结果向量(而不是标量)。
What you're looking for is probably np.cov
or np.corrcoef
. These are also vectorized approaches to getting the result you want.
你要找的可能是np。浸或np.corrcoef。这些也是获取您想要的结果的矢量化方法。
For example:
例如:
>>> x = np.random.randn(10)
>>> y = np.random.randn(10)
>>> X = np.vstack((x, y))
>>> X
array([[ 1.45841294, -0.16430013, -0.20782822, 0.08979425, -1.38337166,
0.36488053, -2.57135737, 0.81215918, -0.54081983, 0.30421112],
[-0.79416305, 1.14511318, -0.4962483 , -0.42647021, -0.59925241,
-0.45612051, -0.02566026, -1.7668091 , -1.63098627, 0.3761437 ]])
>>> np.cov(X)
array([[ 1.28563113, -0.20563105],
[-0.20563105, 0.74178773]])
Is this what you're looking for?
这就是你要找的吗?